×

Support varieties for modules over Chevalley groups and classical Lie algebras. (English) Zbl 1182.20039

Let \(G\) be a connected reductive \(\overline{\mathbb{F}}_p\)-algebraic group defined and split over the finite field \(\mathbb{F}_p\) of \(p\) elements, let \(G_1\) denote the first Frobenius kernel of \(G\), and let \(G(\mathbb{F}_p)\) denote the finite (untwisted) Chevalley group obtained as the \(\mathbb{F}_p\)-rational points of \(G\). Any rational \(G\)-module \(M\) can be considered as a \(G_1\)-module and as a \(G(\mathbb{F}_p)\)-module via restriction.
In 1987, B. J. Parshall [Representations of finite groups, Proc. Conf., Arcata/Calif. 1986, Pt. 1, Proc. Symp. Pure Math. 47, 233-248 (1987; Zbl 0649.20043)] asked whether the support variety \(|G_1|_M\) of \(M\) for \(G_1\) is directly related to the support variety \(|G(\mathbb{F}_p)|_M\) of \(M\) for \(G(\mathbb{F}_p)\)? Moreover, he asked whether the projectivity of \(M\) as a \(G_1\)-module implies the projectivity of \(M\) as a \(G(\mathbb{F}_p)\)-module?
In [Invent. Math. 138, No. 1, 85-101 (1999; Zbl 0937.17006)] the second and the third author of the paper under review have related the dimensions of these support varieties by the inequality \(\dim\,|G(\mathbb{F}_p)|_M\leq\frac 12\dim\,|G_1|_M\) (which immediately gives an affirmative answer to Parshall’s second question). In the paper under review the authors provide an affirmative answer to Parshall’s first question if \(p\) is good, the restricted nullcone is normal, and a certain technical condition is satisfied (which all hold if \(p\) is not smaller than the Coxeter number \(h\) of the corresponding root system).
As an application of their main result the authors extend results of J. L. Alperin and G. Mason [Bull. Lond. Math. Soc. 25, No. 6, 553-557 (1993; Zbl 0820.20017)] to non-simply laced root systems if \(q=p\geq h\) as well as the non-existence of non-projective periodic simple modules unless the rank of \(G\) is one due to I. Janiszczak and J. C. Jantzen [J. Lond. Math. Soc., II. Ser. 41, No. 2, 217-230 (1990; Zbl 0732.20024)] by using the geometry of nilpotent orbits in the Lie algebra of the corresponding algebraic group. Moreover, it is demonstrated how the complexities of \(G\)-modules over \(G(\mathbb{F}_p)\) can be computed provided their support varieties over \(G_1\) are known. In particular, the complexities of all simple \(G(\mathbb{F}_p)\)-modules are determined for any simple group of rank two and the complexity of the induced module \(H^0(\lambda)\) over \(\mathrm{GL}_n(\mathbb{F}_p)\) is computed for \(n\leq 5\) and any restricted \(\lambda\) as well as for \(\lambda=6\), \(7\) if \(\lambda\) is not large.

MSC:

20G05 Representation theory for linear algebraic groups
20G40 Linear algebraic groups over finite fields
20G10 Cohomology theory for linear algebraic groups
20C33 Representations of finite groups of Lie type
17B55 Homological methods in Lie (super)algebras
17B50 Modular Lie (super)algebras
Full Text: DOI

References:

[1] J. L. Alperin, Diagrams for modules, J. Pure Appl. Algebra 16 (1980), no. 2, 111 – 119. · Zbl 0425.16027 · doi:10.1016/0022-4049(80)90010-9
[2] J. L. Alperin and Geoffrey Mason, On simple modules for \?\?(2,\?), Bull. London Math. Soc. 25 (1993), no. 1, 17 – 22. · Zbl 0820.20016 · doi:10.1112/blms/25.1.17
[3] J. L. Alperin and Geoffrey Mason, Partial Steinberg modules for finite groups of Lie type, Bull. London Math. Soc. 25 (1993), no. 6, 553 – 557. · Zbl 0820.20017 · doi:10.1112/blms/25.6.553
[4] Henning Haahr Andersen and Jens Carsten Jantzen, Cohomology of induced representations for algebraic groups, Math. Ann. 269 (1984), no. 4, 487 – 525. · Zbl 0529.20027 · doi:10.1007/BF01450762
[5] George S. Avrunin and Leonard L. Scott, Quillen stratification for modules, Invent. Math. 66 (1982), no. 2, 277 – 286. · Zbl 0489.20042 · doi:10.1007/BF01389395
[6] H. Azad, M. Barry, and G. Seitz, On the structure of parabolic subgroups, Comm. Algebra 18 (1990), no. 2, 551 – 562. · Zbl 0717.20029 · doi:10.1080/00927879008823931
[7] D. J. Benson, Representations and cohomology. II, Cambridge Studies in Advanced Mathematics, vol. 31, Cambridge University Press, Cambridge, 1991. Cohomology of groups and modules. · Zbl 0731.20001
[8] David Benson, Modular representation theory: new trends and methods, Lecture Notes in Mathematics, vol. 1081, Springer-Verlag, Berlin, 1984. · Zbl 0564.20004
[9] Armand Borel, Linear algebraic groups, 2nd ed., Graduate Texts in Mathematics, vol. 126, Springer-Verlag, New York, 1991. · Zbl 0726.20030
[10] N. Bourbaki, Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines, Actualités Scientifiques et Industrielles, No. 1337, Hermann, Paris, 1968 (French). · Zbl 0186.33001
[11] Jon F. Carlson, Zongzhu Lin, Daniel K. Nakano, and Brian J. Parshall, The restricted nullcone, Combinatorial and geometric representation theory (Seoul, 2001) Contemp. Math., vol. 325, Amer. Math. Soc., Providence, RI, 2003, pp. 51 – 75. · Zbl 1059.17013 · doi:10.1090/conm/325/05664
[12] Roger W. Carter, Finite groups of Lie type, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1985. Conjugacy classes and complex characters; A Wiley-Interscience Publication. · Zbl 0567.20023
[13] Leo G. Chouinard, Projectivity and relative projectivity over group rings, J. Pure Appl. Algebra 7 (1976), no. 3, 287 – 302. · Zbl 0327.20020 · doi:10.1016/0022-4049(76)90055-4
[14] E. Cline, B. Parshall, L. Scott, and Wilberd van der Kallen, Rational and generic cohomology, Invent. Math. 39 (1977), no. 2, 143 – 163. · Zbl 0336.20036 · doi:10.1007/BF01390106
[15] David H. Collingwood and William M. McGovern, Nilpotent orbits in semisimple Lie algebras, Van Nostrand Reinhold Mathematics Series, Van Nostrand Reinhold Co., New York, 1993. · Zbl 0972.17008
[16] Stephen Donkin, The normality of closures of conjugacy classes of matrices, Invent. Math. 101 (1990), no. 3, 717 – 736. · Zbl 0822.20045 · doi:10.1007/BF01231523
[17] E. M. Friedlander and B. J. Parshall, On the cohomology of algebraic and related finite groups, Invent. Math. 74 (1983), no. 1, 85 – 117. · Zbl 0526.20035 · doi:10.1007/BF01388532
[18] Eric M. Friedlander and Brian J. Parshall, Support varieties for restricted Lie algebras, Invent. Math. 86 (1986), no. 3, 553 – 562. · Zbl 0626.17010 · doi:10.1007/BF01389268
[19] Eric M. Friedlander and Julia Pevtsova, Representation-theoretic support spaces for finite group schemes, Amer. J. Math. 127 (2005), no. 2, 379 – 420. · Zbl 1072.20009
[20] Eric M. Friedlander and Andrei Suslin, Cohomology of finite group schemes over a field, Invent. Math. 127 (1997), no. 2, 209 – 270. , https://doi.org/10.1007/s002220050119 Andrei Suslin, Eric M. Friedlander, and Christopher P. Bendel, Infinitesimal 1-parameter subgroups and cohomology, J. Amer. Math. Soc. 10 (1997), no. 3, 693 – 728. , https://doi.org/10.1090/S0894-0347-97-00240-3 Andrei Suslin, Eric M. Friedlander, and Christopher P. Bendel, Support varieties for infinitesimal group schemes, J. Amer. Math. Soc. 10 (1997), no. 3, 729 – 759. · Zbl 0960.14023
[21] Daniel Gorenstein, Richard Lyons, and Ronald Solomon, The classification of the finite simple groups. Number 3. Part I. Chapter A, Mathematical Surveys and Monographs, vol. 40, American Mathematical Society, Providence, RI, 1998. Almost simple \?-groups. · Zbl 0890.20012
[22] D. F. Holt and N. Spaltenstein, Nilpotent orbits of exceptional Lie algebras over algebraically closed fields of bad characteristic, J. Austral. Math. Soc. Ser. A 38 (1985), no. 3, 330 – 350. · Zbl 0575.17007
[23] James E. Humphreys, Introduction to Lie algebras and representation theory, Springer-Verlag, New York-Berlin, 1972. Graduate Texts in Mathematics, Vol. 9. · Zbl 0254.17004
[24] James E. Humphreys, Linear algebraic groups, Springer-Verlag, New York-Heidelberg, 1975. Graduate Texts in Mathematics, No. 21. · Zbl 0325.20039
[25] James E. Humphreys, Ordinary and modular representations of Chevalley groups, Lecture Notes in Mathematics, Vol. 528, Springer-Verlag, Berlin-New York, 1976. · Zbl 0341.20037
[26] James E. Humphreys, Conjugacy classes in semisimple algebraic groups, Mathematical Surveys and Monographs, vol. 43, American Mathematical Society, Providence, RI, 1995. · Zbl 0834.20048
[27] Ingo Janiszczak and Jens Carsten Jantzen, Simple periodic modules over Chevalley groups, J. London Math. Soc. (2) 41 (1990), no. 2, 217 – 230. · Zbl 0732.20024 · doi:10.1112/jlms/s2-41.2.217
[28] Jens Carsten Jantzen, Representations of algebraic groups, Pure and Applied Mathematics, vol. 131, Academic Press, Inc., Boston, MA, 1987. · Zbl 0654.20039
[29] J. C. Jantzen, Representations of Chevalley groups in their own characteristic, The Arcata Conference on Representations of Finite Groups (Arcata, Calif., 1986) Proc. Sympos. Pure Math., vol. 47, Amer. Math. Soc., Providence, RI, 1987, pp. 127 – 146.
[30] J. C. Jantzen, Support varieties of Weyl modules, Bull. London Math. Soc. 19 (1987), no. 3, 238 – 244. · Zbl 0623.17008 · doi:10.1112/blms/19.3.238
[31] J.C. Jantzen, Nilpotent Orbits in Representation Theory, Progr. Math. 228, Birkhäuser, Boston, 2004. · Zbl 1169.14319
[32] Shrawan Kumar, Niels Lauritzen, and Jesper Funch Thomsen, Frobenius splitting of cotangent bundles of flag varieties, Invent. Math. 136 (1999), no. 3, 603 – 621. · Zbl 0959.14031 · doi:10.1007/s002220050320
[33] Zongzhu Lin and Daniel K. Nakano, Complexity for modules over finite Chevalley groups and classical Lie algebras, Invent. Math. 138 (1999), no. 1, 85 – 101. · Zbl 0937.17006 · doi:10.1007/s002220050342
[34] R. Lawther, D. Testerman, \( A_1\)-subgroups of exceptional algebraic groups, Memoirs of Amer. Math. Soc. No. 674 (1999). · Zbl 0936.20039
[35] George J. McNinch, Abelian unipotent subgroups of reductive groups, J. Pure Appl. Algebra 167 (2002), no. 2-3, 269 – 300. · Zbl 0999.20035 · doi:10.1016/S0022-4049(01)00038-X
[36] George J. McNinch, Optimal \?\?(2)-homomorphisms, Comment. Math. Helv. 80 (2005), no. 2, 391 – 426. · Zbl 1097.20040 · doi:10.4171/CMH/19
[37] George J. McNinch, Sub-principal homomorphisms in positive characteristic, Math. Z. 244 (2003), no. 2, 433 – 455. · Zbl 1036.20042 · doi:10.1007/s00209-003-0508-0
[38] Daniel K. Nakano, Brian J. Parshall, and David C. Vella, Support varieties for algebraic groups, J. Reine Angew. Math. 547 (2002), 15 – 49. · Zbl 1009.17013 · doi:10.1515/crll.2002.049
[39] Brian J. Parshall, Cohomology of algebraic groups, The Arcata Conference on Representations of Finite Groups (Arcata, Calif., 1986) Proc. Sympos. Pure Math., vol. 47, Amer. Math. Soc., Providence, RI, 1987, pp. 233 – 248.
[40] V.L. Popov, E.B. Vinberg, Invariant theory, Algebraic Geometry IV (Encyclopaedia of Math. Sci. Vol. 55), Springer-Verlag, 1994, 123-278.
[41] Gary M. Seitz, Unipotent elements, tilting modules, and saturation, Invent. Math. 141 (2000), no. 3, 467 – 502. · Zbl 1053.20043 · doi:10.1007/s002220000073
[42] Jean-Pierre Serre, Lie algebras and Lie groups, 2nd ed., Lecture Notes in Mathematics, vol. 1500, Springer-Verlag, Berlin, 1992. 1964 lectures given at Harvard University.
[43] I. Shafarevich, Basic Algebraic Geometry, Vol. 1, 2nd Edition, Springer-Verlag, Berlin/Heidelberg, 1994. · Zbl 0797.14001
[44] T. A. Springer, The unipotent variety of a semi-simple group, Algebraic Geometry (Internat. Colloq., Tata Inst. Fund. Res., Bombay, 1968), Oxford Univ. Press, London, 1969, pp. 373 – 391.
[45] T. A. Springer, Linear algebraic groups, 2nd ed., Progress in Mathematics, vol. 9, Birkhäuser Boston, Inc., Boston, MA, 1998. · Zbl 0927.20024
[46] I. R. Shafarevich , Algebraic geometry. IV, Encyclopaedia of Mathematical Sciences, vol. 55, Springer-Verlag, Berlin, 1994. Linear algebraic groups. Invariant theory; A translation of Algebraic geometry. 4 (Russian), Akad. Nauk SSSR Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1989 [ MR1100483 (91k:14001)]; Translation edited by A. N. Parshin and I. R. Shafarevich.
[47] T. A. Springer and R. Steinberg, Conjugacy classes, Seminar on Algebraic Groups and Related Finite Groups (The Institute for Advanced Study, Princeton, N.J., 1968/69) Lecture Notes in Mathematics, Vol. 131, Springer, Berlin, 1970, pp. 167 – 266. · Zbl 0249.20024
[48] Robert Steinberg, Lectures on Chevalley groups, Yale University, New Haven, Conn., 1968. Notes prepared by John Faulkner and Robert Wilson. · Zbl 1196.22001
[49] Eric M. Friedlander and Andrei Suslin, Cohomology of finite group schemes over a field, Invent. Math. 127 (1997), no. 2, 209 – 270. , https://doi.org/10.1007/s002220050119 Andrei Suslin, Eric M. Friedlander, and Christopher P. Bendel, Infinitesimal 1-parameter subgroups and cohomology, J. Amer. Math. Soc. 10 (1997), no. 3, 693 – 728. , https://doi.org/10.1090/S0894-0347-97-00240-3 Andrei Suslin, Eric M. Friedlander, and Christopher P. Bendel, Support varieties for infinitesimal group schemes, J. Amer. Math. Soc. 10 (1997), no. 3, 729 – 759. · Zbl 0960.14023
[50] Donna M. Testerman, The construction of the maximal \?\(_{1}\)’s in the exceptional algebraic groups, Proc. Amer. Math. Soc. 116 (1992), no. 3, 635 – 644. · Zbl 0805.20035
[51] Donna M. Testerman, \?\(_{1}\)-type overgroups of elements of order \? in semisimple algebraic groups and the associated finite groups, J. Algebra 177 (1995), no. 1, 34 – 76. · Zbl 0857.20025 · doi:10.1006/jabr.1995.1285
[52] Jesper Funch Thomsen, Normality of certain nilpotent varieties in positive characteristic, J. Algebra 227 (2000), no. 2, 595 – 613. · Zbl 0978.22012 · doi:10.1006/jabr.1999.8240
[53] University of Georgia VIGRE Algebra Group, Varieties of nilpotent elements for simple Lie algebras. I. Good primes, J. Algebra 280 (2004), no. 2, 719 – 737. The University of Georgia VIGRE Algebra Group: David J. Benson, Phil Bergonio, Brian D. Boe, Leonard Chastkofsky, Bobbe Cooper, G. Michael Guy, Jo Jang Hyun, Jerome Jungster, Graham Matthews, Nadia Mazza, Daniel K. Nakano and Kenyon J. Platt. · Zbl 1063.17007 · doi:10.1016/j.jalgebra.2004.05.023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.