×

Cohomology for quantum groups via the geometry of the nullcone. (English) Zbl 1344.20066

Mem. Am. Math. Soc. 1077, x, 93 p. (2014).
From the summary: “Let \(\zeta\) be a complex \(\ell\)th root of unity for an odd integer \(\ell>1\). For any complex simple Lie algebra \(\mathfrak g\), let \(u_\zeta=u_\zeta(\mathfrak g)\) be the associated “small” quantum enveloping algebra. This algebra is a finite dimensional Hopf algebra which can be realized as a subalgebra of the Lusztig (divided power) quantum enveloping algebra \(U_\zeta\) and as a quotient algebra of the De Concini-Kac quantum enveloping algebra \(\mathcal U_\zeta\). It plays an important role in the representation theories of both \(U_\zeta\) and \(\mathcal U_\zeta\) in a way analogous to that played by the restricted enveloping algebra \(u\) of a reductive group \(G\) in positive characteristic \(p\) with respect to its distribution and enveloping algebras. In general, little is known about the representation theory of quantum groups (resp., algebraic groups) when \(l\) (resp., \(p\)) is smaller than the Coxeter number \(h\) of the underlying root system…. The main result in this paper provides a surprisingly uniform answer for the cohomology algebra \(\mathbf H^\bullet(u_\zeta,\mathbb C)\) of the small quantum group. When \(\ell>h\), this cohomology algebra has been calculated by V. Ginzburg and S. Kumar [Duke Math. J. 69, No. 1, 179-198 (1993; Zbl 0774.17013)]. Our result requires …a detailed knowledge of the geometry of the nullcone of \(\mathfrak g\) …. Finally, we establish that if \(M\) is a finite dimensional \(u_\zeta\)-module, then \(\mathbf H^\bullet(u_\zeta,M)\) is a finitely generated \(\mathbf H^\bullet(u_\zeta,\mathbb C)\)-module, and we obtain new results on the theory of support varieties for \(u_\zeta\).”
The authors mostly work under the assumption that \(\ell\) is not divisible by a bad prime for the root system \(\Phi\). If \(\Phi\) is of type \(G_2\) they also assume that 3 does not divide \(\ell\). When \(\Phi\) is of type \(B_n\) or type \(C_n\) they often further assume that \(\ell>3\). This still leaves many cases to consider separately. They determine the nullcone in all these cases. One of the key results describes the support varieties of the standard and costandard \(U_\zeta\) modules. It turns out that such a support variety is the closure of a Richardson orbit, as long as the prime is good. To find the relevant Richardson orbit requires a case by case analysis of the interaction between \(\ell\), \(\Phi\) and a given weight \(\lambda\). Computer assistance is invoked where appropriate. With few exceptions the relevant orbit closures are normal. A new feature for \(\ell<h\) is the appearance of “Steinberg modules” in the computation.

MSC:

20G10 Cohomology theory for linear algebraic groups
17B08 Coadjoint orbits; nilpotent varieties
20G42 Quantum groups (quantized function algebras) and their representations
17B37 Quantum groups (quantized enveloping algebras) and related deformations

Citations:

Zbl 0774.17013

Software:

Magma

References:

[1] Henning Haahr Andersen, The strong linkage principle for quantum groups at roots of 1, J. Algebra 260 (2003), no. 1, 2-15. Special issue celebrating the 80th birthday of Robert Steinberg. · Zbl 1043.17005 · doi:10.1016/S0021-8693(02)00618-X
[2] Henning Haahr Andersen and Jens Carsten Jantzen, Cohomology of induced representations for algebraic groups, Math. Ann. 269 (1984), no. 4, 487-525. · Zbl 0529.20027 · doi:10.1007/BF01450762
[3] H. H. Andersen, J. C. Jantzen, W. Soergel, Representations of quantum groups at a pth root of unity and of semisimple groups in characteristic p, Astérique, [[sf]]220, (1994). · Zbl 0802.17009
[4] Henning Haahr Andersen, Patrick Polo, and Ke Xin Wen, Representations of quantum algebras, Invent. Math. 104 (1991), no. 1, 1-59. · Zbl 0724.17012 · doi:10.1007/BF01245066
[5] Sergey Arkhipov and Dennis Gaitsgory, Another realization of the category of modules over the small quantum group, Adv. Math. 173 (2003), no. 1, 114-143. · Zbl 1025.17004 · doi:10.1016/S0001-8708(02)00016-6
[6] S. Arkhipov, A. Braverman, R. Bezrukavnikov, D. Gaitsgory, and I. Mirković, Modules over the small quantum group and semi-infinite flag manifold, Transform. Groups 10 (2005), no. 3-4, 279-362. · Zbl 1122.17007 · doi:10.1007/s00031-005-0401-5
[7] Sergey Arkhipov, Roman Bezrukavnikov, and Victor Ginzburg, Quantum groups, the loop Grassmannian, and the Springer resolution, J. Amer. Math. Soc. 17 (2004), no. 3, 595-678. · Zbl 1061.17013 · doi:10.1090/S0894-0347-04-00454-0
[8] C. P. Bendel, B. Mandler, J. Mankovecky, H. Rosenthal, Program for verifying vanishing of line bundle cohomology, http://www3.uwstout.edu/faculty/bendelc/studentresearch.cfm.
[9] Roman Bezrukavnikov, Cohomology of tilting modules over quantum groups and \(t\)-structures on derived categories of coherent sheaves, Invent. Math. 166 (2006), no. 2, 327-357. · Zbl 1123.17002 · doi:10.1007/s00222-006-0514-z
[10] W. Bosma, J. Cannon, Handbook on Magma Functions, Sydney University, 1996.
[11] Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), no. 3-4, 235-265. Computational algebra and number theory (London, 1993). · Zbl 0898.68039 · doi:10.1006/jsco.1996.0125
[12] Nicolas Bourbaki, Lie groups and Lie algebras. Chapters 4-6, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 2002. Translated from the 1968 French original by Andrew Pressley. · Zbl 1120.17002
[13] Abraham Broer, Normal nilpotent varieties in \(F_4\), J. Algebra 207 (1998), no. 2, 427-448. · Zbl 0918.17003 · doi:10.1006/jabr.1998.7458
[14] Bram Broer, Normality of some nilpotent varieties and cohomology of line bundles on the cotangent bundle of the flag variety, Lie theory and geometry, Progr. Math., vol. 123, Birkhäuser Boston, Boston, MA, 1994, pp. 1-19. · Zbl 1187.90019 · doi:10.1007/s10107-009-0325-2
[15] Jon F. Carlson, Zongzhu Lin, Daniel K. Nakano, and Brian J. Parshall, The restricted nullcone, Combinatorial and geometric representation theory (Seoul, 2001) Contemp. Math., vol. 325, Amer. Math. Soc., Providence, RI, 2003, pp. 51-75. · Zbl 1059.17013 · doi:10.1090/conm/325/05664
[16] Roger W. Carter, Finite groups of Lie type, Wiley Classics Library, John Wiley & Sons, Ltd., Chichester, 1993. Conjugacy classes and complex characters; Reprint of the 1985 original; A Wiley-Interscience Publication.
[17] Sophie Chemla, Rigid dualizing complex for quantum enveloping algebras and algebras of generalized differential operators, J. Algebra 276 (2004), no. 1, 80-102. · Zbl 1127.17012 · doi:10.1016/j.jalgebra.2003.12.001
[18] A. L. Christophersen, A Classification of the Normal Nilpotent Varieties for Groups of Type E_6, Ph.D. Thesis, University of Aarhus, 2006.
[19] Ed Cline, Brian Parshall, and Leonard Scott, A Mackey imprimitivity theory for algebraic groups, Math. Z. 182 (1983), no. 4, 447-471. · Zbl 0537.14029 · doi:10.1007/BF01215476
[20] David H. Collingwood and William M. McGovern, Nilpotent orbits in semisimple Lie algebras, Van Nostrand Reinhold Mathematics Series, Van Nostrand Reinhold Co., New York, 1993. · Zbl 0972.17008
[21] Corrado De Concini and Victor G. Kac, Representations of quantum groups at roots of \(1\), Operator algebras, unitary representations, enveloping algebras, and invariant theory (Paris, 1989) Progr. Math., vol. 92, Birkhäuser Boston, Boston, MA, 1990, pp. 471-506. · Zbl 0738.17008
[22] C. De Concini, V. G. Kac, and C. Procesi, Some quantum analogues of solvable Lie groups, Geometry and analysis (Bombay, 1992) Tata Inst. Fund. Res., Bombay, 1995, pp. 41-65. · Zbl 0878.17014
[23] C. De Concini and C. Procesi, Quantum groups, \(D\)-modules, representation theory, and quantum groups (Venice, 1992), Lecture Notes in Math., vol. 1565, Springer, Berlin, 1993, pp. 31-140. · Zbl 0795.17005 · doi:10.1007/BFb0073466
[24] Stephen Donkin, The normality of closures of conjugacy classes of matrices, Invent. Math. 101 (1990), no. 3, 717-736. · Zbl 0822.20045 · doi:10.1007/BF01231523
[25] Christopher M. Drupieski, Representations and cohomology for Frobenius-Lusztig kernels, J. Pure Appl. Algebra 215 (2011), no. 6, 1473-1491. · Zbl 1242.17014 · doi:10.1016/j.jpaa.2010.09.006
[26] Christopher M. Drupieski, On injective modules and support varieties for the small quantum group, Int. Math. Res. Not. IMRN 10 (2011), 2263-2294. · Zbl 1252.17010 · doi:10.1093/imrn/rnq156
[27] Leonard Evens, The cohomology of groups, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1991. Oxford Science Publications. · Zbl 0742.20050
[28] Jörg Feldvoss and Sarah Witherspoon, Support varieties and representation type of small quantum groups, Int. Math. Res. Not. IMRN 7 (2010), 1346-1362. · Zbl 1197.16036 · doi:10.1093/imrn/rnp189
[29] P. Fiebig, An upper bound on the exceptional characteristics for Lusztig’s character formula, J. Reine Angew. Math., doi: 10.1515/crelle.2011.170. · Zbl 1266.20059
[30] Eric M. Friedlander and Brian J. Parshall, Cohomology of infinitesimal and discrete groups, Math. Ann. 273 (1986), no. 3, 353-374. · Zbl 0586.20021 · doi:10.1007/BF01450727
[31] Eric M. Friedlander and Brian J. Parshall, Cohomology of Lie algebras and algebraic groups, Amer. J. Math. 108 (1986), no. 1, 235-253 (1986). · Zbl 0601.20042 · doi:10.2307/2374473
[32] Victor Ginzburg and Shrawan Kumar, Cohomology of quantum groups at roots of unity, Duke Math. J. 69 (1993), no. 1, 179-198. · Zbl 0774.17013 · doi:10.1215/S0012-7094-93-06909-8
[33] Roe Goodman and Nolan R. Wallach, Representations and invariants of the classical groups, Encyclopedia of Mathematics and its Applications, vol. 68, Cambridge University Press, Cambridge, 1998. · Zbl 0901.22001
[34] Robin Hartshorne, Algebraic geometry, Springer-Verlag, New York-Heidelberg, 1977. Graduate Texts in Mathematics, No. 52. · Zbl 0367.14001
[35] Wim H. Hesselink, Polarizations in the classical groups, Math. Z. 160 (1978), no. 3, 217-234. · Zbl 0364.20048
[36] Peter John Hilton and Urs Stammbach, A course in homological algebra, Springer-Verlag, New York-Berlin, 1971. Graduate Texts in Mathematics, Vol. 4. · Zbl 0268.20035
[37] Jin Hong and Seok-Jin Kang, Introduction to quantum groups and crystal bases, Graduate Studies in Mathematics, vol. 42, American Mathematical Society, Providence, RI, 2002. · Zbl 1134.17007
[38] James E. Humphreys, Introduction to Lie algebras and representation theory, Springer-Verlag, New York-Berlin, 1972. Graduate Texts in Mathematics, Vol. 9. · Zbl 0254.17004
[39] James E. Humphreys, Conjugacy classes in semisimple algebraic groups, Mathematical Surveys and Monographs, vol. 43, American Mathematical Society, Providence, RI, 1995. · Zbl 0834.20048
[40] Jens Carsten Jantzen, Representations of algebraic groups, 2nd ed., Mathematical Surveys and Monographs, vol. 107, American Mathematical Society, Providence, RI, 2003. · Zbl 1034.20041
[41] Jens Carsten Jantzen, Lectures on quantum groups, Graduate Studies in Mathematics, vol. 6, American Mathematical Society, Providence, RI, 1996. · Zbl 0842.17012
[42] Jens Carsten Jantzen, Nilpotent orbits in representation theory, Lie theory, Progr. Math., vol. 228, Birkhäuser Boston, Boston, MA, 2004, pp. 1-211. · Zbl 1169.14319
[43] J. C. Jantzen, Support varieties of Weyl modules, Bull. London Math. Soc. 19 (1987), no. 3, 238-244. · Zbl 0623.17008 · doi:10.1112/blms/19.3.238
[44] D. S. Johnston and R. W. Richardson, Conjugacy classes in parabolic subgroups of semisimple algebraic groups. II, Bull. London Math. Soc. 9 (1977), no. 3, 245-250. · Zbl 0375.22008
[45] Richard Kane, Reflection groups and invariant theory, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 5, Springer-Verlag, New York, 2001. · Zbl 0986.20038
[46] Hanspeter Kraft and Claudio Procesi, Closures of conjugacy classes of matrices are normal, Invent. Math. 53 (1979), no. 3, 227-247. · Zbl 0434.14026 · doi:10.1007/BF01389764
[47] Hanspeter Kraft and Claudio Procesi, On the geometry of conjugacy classes in classical groups, Comment. Math. Helv. 57 (1982), no. 4, 539-602. · Zbl 0511.14023 · doi:10.1007/BF02565876
[48] Shrawan Kumar, Niels Lauritzen, and Jesper Funch Thomsen, Frobenius splitting of cotangent bundles of flag varieties, Invent. Math. 136 (1999), no. 3, 603-621. · Zbl 0959.14031 · doi:10.1007/s002220050320
[49] Ernst Kunz, Introduction to commutative algebra and algebraic geometry, Birkhäuser Boston, Inc., Boston, MA, 1985. Translated from the German by Michael Ackerman; With a preface by David Mumford. · Zbl 0563.13001
[50] Anna Lachowska, On the center of the small quantum group, J. Algebra 262 (2003), no. 2, 313-331. · Zbl 1049.17011 · doi:10.1016/S0021-8693(03)00033-4
[51] Anna Lachowska, A counterpart of the Verlinde algebra for the small quantum group, Duke Math. J. 118 (2003), no. 1, 37-60. · Zbl 1036.17014 · doi:10.1215/S0012-7094-03-11813-X
[52] Serge Levendorskiĭ and Yan Soibelman, Algebras of functions on compact quantum groups, Schubert cells and quantum tori, Comm. Math. Phys. 139 (1991), no. 1, 141-170.
[53] G. Lusztig, Modular representations and quantum groups, Classical groups and related topics (Beijing, 1987) Contemp. Math., vol. 82, Amer. Math. Soc., Providence, RI, 1989, pp. 59-77. · doi:10.1090/conm/082/982278
[54] George Lusztig, Finite-dimensional Hopf algebras arising from quantized universal enveloping algebra, J. Amer. Math. Soc. 3 (1990), no. 1, 257-296. · Zbl 0695.16006 · doi:10.1090/S0894-0347-1990-1013053-9
[55] Saunders Mac Lane, Homology, Classics in Mathematics, Springer-Verlag, Berlin, 1995. Reprint of the 1975 edition. · Zbl 0818.18001
[56] M. Mastnak, J. Pevtsova, P. Schauenburg, and S. Witherspoon, Cohomology of finite-dimensional pointed Hopf algebras, Proc. Lond. Math. Soc. (3) 100 (2010), no. 2, 377-404. · Zbl 1195.16013 · doi:10.1112/plms/pdp030
[57] Hideyuki Matsumura, Commutative ring theory, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 8, Cambridge University Press, Cambridge, 1989. Translated from the Japanese by M. Reid. · Zbl 0666.13002
[58] Susan Montgomery, Hopf algebras and their actions on rings, CBMS Regional Conference Series in Mathematics, vol. 82, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1993. · Zbl 0793.16029
[59] Daniel K. Nakano, Brian J. Parshall, and David C. Vella, Support varieties for algebraic groups, J. Reine Angew. Math. 547 (2002), 15-49. · Zbl 1009.17013 · doi:10.1515/crll.2002.049
[60] V. V. Ostrik, Cohomological supports for quantum groups, Funktsional. Anal. i Prilozhen. 32 (1998), no. 4, 22-34, 95 (Russian, with Russian summary); English transl., Funct. Anal. Appl. 32 (1998), no. 4, 237-246 (1999). · Zbl 0981.17010 · doi:10.1007/BF02463206
[61] Brian Parshall and Jian Pan Wang, Cohomology of quantum groups: the quantum dimension, Canad. J. Math. 45 (1993), no. 6, 1276-1298. · Zbl 0835.17009 · doi:10.4153/CJM-1993-072-4
[62] Steen Ryom-Hansen, A \(q\)-analogue of Kempf’s vanishing theorem, Mosc. Math. J. 3 (2003), no. 1, 173-187, 260 (English, with English and Russian summaries). · Zbl 1062.17013
[63] Eric Sommers, Normality of nilpotent varieties in \(E_6\), J. Algebra 270 (2003), no. 1, 288-306. · Zbl 1041.22009 · doi:10.1016/S0021-8693(03)00416-2
[64] Eric Sommers, Normality of very even nilpotent varieties in \(D_{2l}\), Bull. London Math. Soc. 37 (2005), no. 3, 351-360. · Zbl 1078.14067 · doi:10.1112/S0024609304003935
[65] E. Sommers, private communication.
[66] T. A. Springer and R. Steinberg, Conjugacy classes, Seminar on Algebraic Groups and Related Finite Groups (The Institute for Advanced Study, Princeton, N.J., 1968/69) Lecture Notes in Mathematics, Vol. 131, Springer, Berlin, 1970, pp. 167-266. · Zbl 0249.20024
[67] Robert Steinberg, Conjugacy classes in algebraic groups, Lecture Notes in Mathematics, Vol. 366, Springer-Verlag, Berlin-New York, 1974. Notes by Vinay V. Deodhar. · Zbl 0281.20037
[68] Andrei Suslin, Eric M. Friedlander, and Christopher P. Bendel, Infinitesimal \(1\)-parameter subgroups and cohomology, J. Amer. Math. Soc. 10 (1997), no. 3, 693-728. · Zbl 0960.14023 · doi:10.1090/S0894-0347-97-00240-3
[69] Andrei Suslin, Eric M. Friedlander, and Christopher P. Bendel, Support varieties for infinitesimal group schemes, J. Amer. Math. Soc. 10 (1997), no. 3, 729-759. · Zbl 0960.14024 · doi:10.1090/S0894-0347-97-00239-7
[70] Jesper Funch Thomsen, Normality of certain nilpotent varieties in positive characteristic, J. Algebra 227 (2000), no. 2, 595-613. · Zbl 0978.22012 · doi:10.1006/jabr.1999.8240
[71] University of Georgia VIGRE Algebra Group, Varieties of nilpotent elements for simple Lie algebras. I. Good primes, J. Algebra 280 (2004), no. 2, 719-737. The University of Georgia VIGRE Algebra Group: David J. Benson, Phil Bergonio, Brian D. Boe, Leonard Chastkofsky, Bobbe Cooper, G. Michael Guy, Jo Jang Hyun, Jerome Jungster, Graham Matthews, Nadia Mazza, Daniel K. Nakano and Kenyon J. Platt. · Zbl 1063.17007 · doi:10.1016/j.jalgebra.2004.05.023
[72] University of Georgia VIGRE Algebra Group, Varieties of nilpotent elements for simple Lie algebras. II. Bad primes, J. Algebra 292 (2005), no. 1, 65-99. The University of Georgia VIGRE Algebra Group: David J. Benson, Philip Bergonio, Brian D. Boe, Leonard Chastkofsky, Bobbe Cooper, G. Michael Guy, Jeremiah Hower, Markus Hunziker, Jo Jang Hyun, Jonathan Kujawa, Graham Matthews, Nadia Mazza, Daniel K. Nakano, Kenyon J. Platt and Caroline Wright. · Zbl 1124.17003 · doi:10.1016/j.jalgebra.2004.12.023
[73] University of Georgia VIGRE Algebra Group, Support varieties for Weyl modules over bad primes, J. Algebra 312 (2007), no. 2, 602-633. University of Georgia VIGRE Algebra Group: David J. Benson, Philip Bergonio, Brian D. Boe, Leonard Chastkofsky, Bobbe Cooper, Jeremiah Hower, Jo Jang Hyun, Jonathan Kujawa, Nadia Mazza, Daniel K. Nakano, Kenyon J. Platt and Caroline Wright. · Zbl 1123.20038 · doi:10.1016/j.jalgebra.2007.03.008
[74] Garth Warner, Harmonic analysis on semi-simple Lie groups. I, Springer-Verlag, New York-Heidelberg, 1972. Die Grundlehren der mathematischen Wissenschaften, Band 188. · Zbl 0265.22020
[75] O. Zariski and P. Samuel, Commutative Algebra, I, Springer, 1960. · Zbl 0121.27801
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.