×

‘FE-meshfree’ QUAD4 element for free-vibration analysis. (English) Zbl 1194.74489

Summary: The FE-LSPIM QUAD4 element, which was recently introduced for the static analysis, uses new shape functions that combine the meshfree and finite element shape functions so as to synergize the individual strengths of meshfree and finite element methods. As a result, the element inherits the completeness properties of meshfree shape functions and the compatibility properties of finite element shape functions. In this paper, the element is extended to free vibration analysis of two-dimensional solids. Typical benchmark problems are solved to test the efficacy of the element. The results show that the element gives more accurate solution than the peer elements particularly under distorted mesh.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74H45 Vibrations in dynamical problems in solid mechanics
74H15 Numerical approximation of solutions of dynamical problems in solid mechanics
Full Text: DOI

References:

[1] Nayroles, B.; Touzot, G.; Villon, P., Generalizing the finite element method: diffuse approximation and diffuse elements, Comput. Mech., 10, 307-318 (1992) · Zbl 0764.65068
[2] Belytschko, T.; Lu, Y. Y.; Gu, L., Element free Galerkin methods, Int. J. Numer. Methods Engrg., 37, 229-256 (1994) · Zbl 0796.73077
[3] Belytschko, T.; Lu, Y. Y.; Gu, L.; Tabbara, M., Element-free Galerkin methods for static and dynamic fracture, Int. J. Solids Struct., 32, 2547-2570 (1995) · Zbl 0918.73268
[4] Belytschko, T.; Krongauz, Y.; Fleming, M.; Organ, D.; Liu, W. K., Smoothing and accelerated computations in the element free Galerkin method, J. Comput. Appl. Math., 74, 111-126 (1996) · Zbl 0862.73058
[5] Liu, W. K.; Jun, S.; Zhang, Y. F., Reproducing kernel particle methods, Int. J. Numer. Methods Engrg., 20, 1081-1106 (1995) · Zbl 0881.76072
[6] Liu, G. R.; Gu, Y. T., A point interpolation method for two dimensional solids, Int. J. Numer. Methods Engrg., 50, 937-951 (2001) · Zbl 1050.74057
[7] Atluri, S. N.; Zhu, T., A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics, Comput. Mech., 22, 117-127 (1998) · Zbl 0932.76067
[8] Atluri, S. N.; Cho, J. Y.; Kim, H. G., Analysis of thin beams, using the meshless local Petrov-Galerkin (MLPG) method with generalized moving least squares interpolation, Comput. Mech., 24, 334-347 (1999) · Zbl 0968.74079
[9] Atluri, S. N.; Zhu, T., New concepts in meshless methods, Int. J. Numer. Methods Engrg., 47, 537-556 (2000) · Zbl 0988.74075
[10] Atluri, S. N.; Zhu, T., The meshless local Petrov-Galerkin (MLPG) approach for solving problems in elasto-statics, Comput. Mech., 25, 169-179 (2000) · Zbl 0976.74078
[11] Zhu, T.; Zhang, J. D.; Atluri, S. N., A local boundary integral equation (LBIE) method in computational mechanics, and a meshless discretization approach, Comput. Mech., 21, 223-235 (1998) · Zbl 0920.76054
[12] Liu, G. R.; Gu, Y. T., A local point interpolation method for stress analysis of two-dimensional solids, Int. J. Struct. Engrg. Mech., 11, 221-236 (2001)
[13] Lam, K. Y.; Wang, Q. X.; Li, H., A novel meshless approach-local Kriging (LoKriging) method with two-dimensional structural analysis, Comput. Mech., 33, 235-244 (2004) · Zbl 1067.74074
[14] Cai, Y. C.; Zhu, H. H., A meshless local natural neighbour interpolation method for stress analysis of solids, Engrg. Anal. Bound. Elem., 28, 607-613 (2004) · Zbl 1130.74054
[15] Ouatouati, A. E.; Johnson, D. A., A new approach for numerical modal analysis using the element-free method, Int. J. Numer. Methods Engrg., 46, 1-27 (1999) · Zbl 0961.74075
[16] Liu, G. R.; Chen, X. L., A meshfree method for static and free vibration analysis of thin plates of complicated shape, J. Sound Vibr., 241, 839-855 (2001)
[17] Liu, G. R.; Gu, Y. T., A local radial point interpolation method (LRPIM) for free vibration analyses of 2-D solids, J. Sound Vibr., 246, 29-46 (2001)
[18] Zhou, J. X.; Zhang, H. Y.; Zhang, L., Reproducing kernel particle method for free and forced vibration analysis, J. Sound Vibr., 279, 389-402 (2005)
[19] Liew, K. M.; Ng, T. Y.; Zhao, X.; Reddy, J. N., Harmonic reproducing kernel particle method for free vibration analysis of rotating cylindrical shells, Comput. Methods Appl. Mech. Engrg., 191, 4141-4157 (2002) · Zbl 1083.74609
[20] Li, H.; Wang, Q. X.; Lam, K. Y., Development of a novel meshless local Kriging (LoKriging) method for structural dynamic analysis, Comput. Methods Appl. Mech. Engrg., 193, 2599-2619 (2004) · Zbl 1067.74598
[21] De Bel, E.; Villon, Ph.; Bouillard, P. H., Forced vibrations in the medium frequency range solved by a partition of unity method with local information, Int. J. Numer. Methods Engrg., 62, 1105-1126 (2004) · Zbl 1080.74029
[22] Hao, S.; Park, H. S.; Liu, W. K., Moving particle finite element method, Int. J. Numer. Methods Engrg., 53, 1937-1958 (2001) · Zbl 1169.74606
[23] Hao, S.; Liu, W. K.; Belytschko, T., Moving particle finite element method with global smoothness, Int. J. Numer. Methods Engrg., 59, 1007-1020 (2004) · Zbl 1065.74608
[24] Tian, R.; Yagawa, G., Generalized nodes and high-performance elements, Int. J. Numer. Methods Engrg., 64, 2039-2071 (2005) · Zbl 1122.74524
[25] Rajendran, S.; Zhang, B. R., A “FE-Meshfree” QUAD4 element based on partition of unity, Comput. Methods Appl. Mech. Engrg., 197, 128-147 (2007) · Zbl 1169.74628
[26] Ooi, E. T.; Rajendran, S.; Yeo, J. H.; Zhang, B. R., A mesh distortion tolerant 8-node solid element based on the partition of unity method with inter-element compatibility and completeness properties, Finite Elem. Anal. Des., 43, 771-787 (2007)
[27] B.R. Zhang, Development of FE-meshfree hybrid methods and their application to static and free vibration problems in 2-D solid mechanics, Ph.D. Thesis, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 2008.; B.R. Zhang, Development of FE-meshfree hybrid methods and their application to static and free vibration problems in 2-D solid mechanics, Ph.D. Thesis, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 2008.
[28] Nagashima, T., Node-by-node meshless approach and its application to structural analyses, Int. J. Numer. Methods Engrg., 46, 341-385 (1999) · Zbl 0965.74079
[29] Taylor, R. L.; Beresford, P. J.; Wilson, E. L., A nonconforming element for stress analysis, Int. J. Numer. Methods Engrg., 10, 1211-1219 (1976) · Zbl 0338.73041
[30] Brebbia, C. A.; Telles, J. C.F.; Wrobel, L. C., Boundary Element Techniques (1984), Springer-Verlag: Springer-Verlag Berlin · Zbl 0556.73086
[31] Lamb, H., On waves in an elastic plate, Proc. Roy. Soc. London, Ser. A, 93, 114-128 (1917) · JFM 46.1232.01
[32] R. Mindlin, Waves and vibrations in isotropic elastic plates, in: Proceedings of the First Symposium on Naval Structural Mechanics, 1972, pp. 199-232.; R. Mindlin, Waves and vibrations in isotropic elastic plates, in: Proceedings of the First Symposium on Naval Structural Mechanics, 1972, pp. 199-232.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.