×

Comparing point and interval estimates in the bivariate \(t\)-copula model with application to financial data. (English) Zbl 1230.62028

Summary: The paper considers joint maximum likelihood (ML) and semiparametric (SP) estimation of copula parameters in a bivariate \(t\)-copula. Analytical expressions for the asymptotic covariance matrix involving integrals over special functions are derived, which can be evaluated numerically. These direct evaluations of the Fisher information matrix are compared to Hessian evaluations based on numerical differentiation in a simulation study showing a satisfactory performance of the computationally less demanding Hessian evaluations. Individual asymptotic confidence intervals for the \(t\)-copula parameters and the corresponding tail dependence coefficient are derived. For two financial data sets these confidence intervals are calculated using both direct evaluation of the Fisher information and numerical evaluation of the Hessian matrix. These confidence intervals are compared to parametric and nonparametric BCA bootstrap intervals based on ML and SP estimation, respectively, showing a preference for asymptotic confidence intervals based on numerical Hessian evaluations.

MSC:

62F25 Parametric tolerance and confidence regions
62H12 Estimation in multivariate analysis
62H05 Characterization and structure theory for multivariate probability distributions; copulas
62F40 Bootstrap, jackknife and other resampling methods
62G09 Nonparametric statistical resampling methods
65C60 Computational problems in statistics (MSC2010)
62P05 Applications of statistics to actuarial sciences and financial mathematics

Software:

LBFGS-B; bootstrap; QRM
Full Text: DOI

References:

[1] Aas K, Czado C, Frigessi A, Bakken H (2009) Pair-copula constructions of multiple dependence. Insur Math Econ 44(2): 182–198 · Zbl 1165.60009 · doi:10.1016/j.insmatheco.2007.02.001
[2] Abramowitz M, Stegun I (eds) (1992) Handbook of mathematical functions with formulas, graphs, and mathematical tables. Dover Publications Inc., New York. Reprint of the 1972 edition · Zbl 0171.38503
[3] Byrd RH, Lu P, Nocedal J, Zhu CY (1995) A limited memory algorithm for bound constrained optimization. SIAM J Sci Comput 16(5): 1190–1208 · Zbl 0836.65080 · doi:10.1137/0916069
[4] Dalla Valle L (2007) Bayesian copulae distributions, with application to operational risk management. Methodol Comput Appl Probab (to appear) · Zbl 1293.62016
[5] Demarta S, McNeil AJ (2005) The t-copula and related copulas. Int Stat Rev 73(1): 111–129 · Zbl 1104.62060 · doi:10.1111/j.1751-5823.2005.tb00254.x
[6] Efron B, Tibshirani RJ (1993) An introduction to the bootstrap, volume 57 of monographs on statistics and applied probability. Chapman and Hall, New York
[7] Embrechts P, McNeil AJ, Straumann D (2002) Correlation and dependence in risk management: properties and pitfalls. In: Risk management: value at risk and beyond (Cambridge, 1998), pp 176–223. Cambridge University Press, Cambridge
[8] Embrechts P, Lindskog F, McNeil AJ (2003) Modelling dependence with copulas and applications to risk management. In: Handbook of heavy tailed distributions in finance. Elsevier/North-Holland, Amsterdam
[9] Gradshteyn IS, Ryzhik IM (1980) Table of integrals, series, and products. Academic Press [Harcourt Brace Jovanovich Publishers], New York · Zbl 0521.33001
[10] Joe H (1997) Multivariate models and dependence concepts, volume 73 of monographs on statistics and applied probability. Chapman & Hall, London
[11] Kotz S, Nadarajah S (2004) Multivariate t distributions and their applications. Cambridge University Press, Cambridge · Zbl 1100.62059
[12] Kruskal WH (1958) Ordinal measures of association. J Am Stat Assoc 53: 814–861 · Zbl 0087.15403 · doi:10.1080/01621459.1958.10501481
[13] Lehmann EL, Casella G (1998) Theory of point estimation, 2nd edn. Springer texts in statistics. Springer-Verlag, New York · Zbl 0916.62017
[14] Lindskog F (2000) Modelling dependence with copulas. RiskLab Report, ETH Zürich
[15] Lindskog F, McNeil A, Schmock U (2003) Kendall’s tau for elliptical distributions. In: Credit risk: measurement, evaluation and management, pp 267–289. Physica Verlag, Heidelberg
[16] Mashal R, Zeevi A (2002) Beyond correlation: extreme co-movements between financial assets. Unpublished, Columbia University
[17] McNeil AJ, Frey R, Embrechts P (2005) Quantitative risk management. Princeton Series in Finance. Princeton University Press, Princeton, NJ. Concepts, techniques and tools
[18] Min A, Czado C (2008) Bayesian inference for multivariate copulas using pair-copula constructions. Preprint, Center for Mathematical Sciences, Technische Universiät München. Available at http://www-m4.ma.tum.de/Papers/index.html
[19] Schweizer B, Wolff EF (1981) On nonparametric measures of dependence for random variables. Ann Stat 9(4): 879–885 · Zbl 0468.62012 · doi:10.1214/aos/1176345528
[20] Sklar M (1959) Fonctions de répartition à n dimensions et leurs marges. Publ Inst Stat Univ Paris 8: 229–231 · Zbl 0100.14202
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.