×

The generalized Ricci flow for three-dimensional manifolds with one Killing vector. (English) Zbl 1111.53051

Summary: We consider three-dimensional (3D) flow equations inspired by the renormalization group (RG) equations of string theory with a three-dimensional target space. By modifying the flow equations to include a U(1) gauge field, and adding carefully chosen De Turck terms, we are able to extend recent two-dimensional results of Bakas to the case of a 3D Riemannian metric with one Killing vector. In particular, we show that the RG flow with De Turck terms can be reduced to two equations: the continual Toda flow solved by Bakas, plus its linearizaton. We find exact solutions which flow to homogeneous but not always isotropic geometries.

MSC:

53C44 Geometric evolution equations (mean curvature flow, Ricci flow, etc.) (MSC2010)
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
83E30 String and superstring theories in gravitational theory

References:

[1] DOI: 10.1090/conm/071/954419 · doi:10.1090/conm/071/954419
[2] DOI: 10.1090/conm/071/954419 · doi:10.1090/conm/071/954419
[3] DOI: 10.1007/BF02415442 · JFM 38.0452.02 · doi:10.1007/BF02415442
[4] DOI: 10.1002/prop.200410131 · Zbl 1052.81061 · doi:10.1002/prop.200410131
[5] DOI: 10.1002/prop.200410131 · Zbl 1052.81061 · doi:10.1002/prop.200410131
[6] Thurston W. P., The Geometry and Topology of Three-Manifolds 1 (1997)
[7] DOI: 10.1112/blms/15.5.401 · Zbl 0561.57001 · doi:10.1112/blms/15.5.401
[8] Hamilton R. S., J. Diff. Geom. 17 pp 255– (1982)
[9] DOI: 10.1090/S0273-0979-99-00773-9 · Zbl 0926.53016 · doi:10.1090/S0273-0979-99-00773-9
[10] DOI: 10.1090/S0273-0979-99-00773-9 · Zbl 0926.53016 · doi:10.1090/S0273-0979-99-00773-9
[11] DOI: 10.1088/0264-9381/19/23/102 · Zbl 1039.83030 · doi:10.1088/0264-9381/19/23/102
[12] DOI: 10.1088/0264-9381/19/23/102 · Zbl 1039.83030 · doi:10.1088/0264-9381/19/23/102
[13] De Turck D. M., J. Diff. Geom. 18 pp 157– (1983)
[14] for a review of this and other matters concerning the Ricci flow, see R. S. Hamilton, Surveys in Differential Geometry, Vol. 2, p. 7 (International Press, Somerville, MA, 1995).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.