×

On unit signatures and narrow class groups of odd degree abelian number fields. (English) Zbl 1518.11078

In this paper, the main object of research are algebraic number fields \(K\) with abelian Galois group \(G\) and odd degree over \(\mathbb Q\). The authors work out the connections between the \(2\)-Selmer group of \(K\), the unit signature rank of \(K\), and the \(2\)-ranks of the class group, the narrow class group and the ray class group of conductor \(4\) of \(K\). Each of these groups is a \(\mathbb Z [G]\)-module \(M\), and to analyze its \(2\)-rank one studies the \(\mathbb F_2 [G]\)-module \(M/M^2\). Each irreducible component of the latter is isomorphic to an extension field \(\mathbb F_2 (\chi) \subset \overline {\mathbb F}_2\), where \(\chi\) is an \(\overline {\mathbb F}_2\)-character of \(G\) and \(\overline {\mathbb F}_2\) a fixed algebraic closure of \(\mathbb F_2\).
Let \(S(K)\) denote the image of the \(2\)-Selmer group of \(K\) under the \(2\)-Selmer signature map, as introduced by D. S. Dummit and the third author [Proc. Lond. Math. Soc. (3) 117, No. 4, 682–726 (2018; Zbl 1457.11152)]. The main result (Theorem 5.4.2) shows that there are exactly 6 possible structures for the irreducible components of the \(\mathbb F_2 [G]\)-module \(S(K)\). Using the above mentioned connections, this enables the authors to obtain results on the \(2\)-rank of the \(\chi\)-part of the unit signature group (Theorem 5.5.2) and in case that \(G\) is cyclic of prime degree, also on the \(2\)-rank of the unit signature group.
Inspired by these results, the authors put up conjectures in the sense of Cohen-Lenstra heuristics, as, e.g., Conjecture 1.1.3: “As \(K\) ranges over cyclic number fields of degree \(7\) with odd class number, the probability that the narrow class number is also odd is \(7/9\).” To provide evidence for their conjectures, the authors present computations with all cyclic cubic (\(X=10^7\)) and cyclic septic (\(X \approx 244861\)) fields, with conductor up to \(X\). In an appendix (with Noam Elkies) it is proved that there indeed exist infinitely many cyclic cubic number fields with signature rank \(1\).

MSC:

11R27 Units and factorization
11R29 Class numbers, class groups, discriminants
11Y40 Algebraic number theory computations
11R80 Totally real fields
11R45 Density theorems

Citations:

Zbl 1457.11152

Software:

LMFDB; GitHub; Magma

References:

[1] Armitage, J. V., Classnumbers and unit signatures, Mathematika, 94-98 (1967) · Zbl 0149.29501 · doi:10.1112/S0025579300008044
[2] Adam, Michael, A class group heuristic based on the distribution of 1-eigenspaces in matrix groups, J. Number Theory, 225-235 (2015) · Zbl 1371.11145 · doi:10.1016/j.jnt.2014.10.018
[3] Balady, Steve, Families of cyclic cubic fields, J. Number Theory, 394-406 (2016) · Zbl 1414.11132 · doi:10.1016/j.jnt.2016.03.011
[4] B.Breen, The \(2\)-Selmer group of number fields, Ph.D.thesis, in preparation.
[5] B.Breen, I.Varma, and J.Voight, Cyclic fields code, 2019, available at
https://github.com/BenKBreen/Cyclic-fields-codehttps://github.com/BenKBreen/Cyclic-fields-code.
[6] Fieker, Claus, Proceedings of the Thirteenth Algorithmic Number Theory Symposium. On the construction of class fields, Open Book Ser., 239-255 (2019), Math. Sci. Publ., Berkeley, CA · Zbl 1532.11159
[7] S.Chan, P.Koymans, D.Milovic, and C.Pagano, On the negative Pell equation, arXiv preprint available at https://arxiv.org/abs/1908.01752https://arxiv.org/abs/1908.01752.
[8] Cohen, Henri, On the density of discriminants of cyclic extensions of prime degree, J. Reine Angew. Math., 169-209 (2002) · Zbl 1004.11063 · doi:10.1515/crll.2002.071
[9] Cohen, H., Number theory, Noordwijkerhout 1983. Heuristics on class groups of number fields, Lecture Notes in Math., 33-62 (1983), Springer, Berlin · Zbl 0558.12002 · doi:10.1007/BFb0099440
[10] Cohen, Henri, \'{E}tude heuristique des groupes de classes des corps de nombres, J. Reine Angew. Math., 39-76 (1990) · Zbl 0699.12016
[11] Cohen, Henri, Heuristics on class groups: some good primes are not too good, Math. Comp., 329-334 (1994) · Zbl 0827.11067 · doi:10.2307/2153578
[12] Cohn, Harvey, The density of abelian cubic fields, Proc. Amer. Math. Soc., 476-477 (1954) · Zbl 0055.26901 · doi:10.2307/2031963
[13] Dickson, Leonard Eugene, History of the theory of numbers. Vol. II: Diophantine analysis, xxv+803 pp. (1966), Chelsea Publishing Co., New York · Zbl 0958.11500
[14] Dummit, David S., Signature ranks of units in cyclotomic extensions of abelian number fields, Pacific J. Math., 285-298 (2019) · Zbl 1453.11139 · doi:10.2140/pjm.2019.298.285
[15] D. S. Dummit and H. Kisilevsky, Unit signatures in real biquadratic and multiquadratic number fields, arXiv preprint available at https://arxiv.org/pdf/1904.04411. · Zbl 1483.11245
[16] Dummit, David S., The 2-Selmer group of a number field and heuristics for narrow class groups and signature ranks of units, Proc. Lond. Math. Soc. (3), 682-726 (2018) · Zbl 1457.11152 · doi:10.1112/plms.12143
[17] Dutarte, Philippe, Number theory (Besan\c{c}on), 1983-1984. Compatibilit\'{e} avec le Spiegelungssatz de probabilit\'{e}s conjecturales sur le \(p\)-rang du groupe des classes, Publ. Math. Fac. Sci. Besan\c{c}on, Exp. No. 4, 11 pp. (1984), Univ. Franche-Comt\'{e}, Besan\c{c}on · Zbl 0576.12004
[18] Edgar, H. M., Class groups, totally positive units, and squares, Proc. Amer. Math. Soc., 33-37 (1986) · Zbl 0604.12007 · doi:10.2307/2045762
[19] Elkies, Noam D., On \(A^4+B^4+C^4=D^4\), Math. Comp., 825-835 (1988) · Zbl 0698.10010 · doi:10.2307/2008781
[20] L.Euler, De resolutione formularum quadricarum indeterminatarum per numeros integros (On the resolution of formulas of squares of indeterminates by integral numbers), Novi Comm.Acad.Petrop.9 (1764), 3-39; Opera Omnia (1) 2, 576-611.
[21] Fouvry, \'{E}tienne, On the negative Pell equation, Ann. of Math. (2), 2035-2104 (2010) · Zbl 1230.11136 · doi:10.4007/annals.2010.172.2035
[22] Fr\"{o}hlich, Albrecht, Galois module structure of algebraic integers, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], x+262 pp. (1983), Springer-Verlag, Berlin · Zbl 0501.12012 · doi:10.1007/978-3-642-68816-4
[23] Gras, Georges, Th\'{e}or\`emes de r\'{e}flexion, J. Th\'{e}or. Nombres Bordeaux, 399-499 (1998) · Zbl 0949.11058
[24] Gras, Georges, Class field theory, Springer Monographs in Mathematics, xiv+491 pp. (2003), Springer-Verlag, Berlin · Zbl 1019.11032 · doi:10.1007/978-3-662-11323-3
[25] Ichimura, Humio, On a duality of Gras between totally positive and primary cyclotomic units, Math. J. Okayama Univ., 125-132 (2016) · Zbl 1408.11109
[26] Lee, Yoonjin, Cohen-Lenstra heuristics and the Spiegelungssatz: number fields, J. Number Theory, 37-66 (2002) · Zbl 1026.11080 · doi:10.1006/jnth.2001.2699
[27] Lee, Yoonjin, Cohen-Lenstra heuristics and the Spiegelungssatz; function fields, J. Number Theory, 187-199 (2004) · Zbl 1049.11121 · doi:10.1016/j.jnt.2004.01.001
[28] Leopoldt, Heinrich-Wolfgang, Zur Struktur der \(l\)-Klassengruppe galoisscher Zahlk\"{o}rper, J. Reine Angew. Math., 165-174 (1958) · Zbl 0082.25402 · doi:10.1515/crll.1958.199.165
[29] Lemmermeyer, F., Selmer groups and quadratic reciprocity, Abh. Math. Sem. Univ. Hamburg, 279-293 (2006) · Zbl 1141.11051 · doi:10.1007/BF02960869
[30] The LMFDB Collaboration, The \(L\)-functions and Modular Forms Database, http://www.lmfdb.orghttp://www.lmfdb.org, 2019.
[31] Bosma, Wieb, The Magma algebra system. I. The user language, J. Symbolic Comput., 235-265 (1997) · Zbl 0898.68039 · doi:10.1006/jsco.1996.0125
[32] Malle, Gunter, Cohen-Lenstra heuristic and roots of unity, J. Number Theory, 2823-2835 (2008) · Zbl 1225.11143 · doi:10.1016/j.jnt.2008.01.002
[33] Malle, Gunter, On the distribution of class groups of number fields, Experiment. Math., 465-474 (2010) · Zbl 1297.11139 · doi:10.1080/10586458.2010.10390636
[34] Oriat, Bernard, Relations entre les \(2\)-groupes des classes# d’id\'{e}aux des extensions quadratiques \(k(\surd d)\) et \(k(\surd -d)\), Ann. Inst. Fourier (Grenoble), vii, 37-59 (1977) · Zbl 0351.12001
[35] Oriat, Bernard, Relation entre les \(2\)-groupes des classes d’id\'{e}aux au sens ordinaire et restreint de certains corps de nombres, Bull. Soc. Math. France, 301-307 (1976) · Zbl 0352.12007
[36] Shanks, Daniel, The simplest cubic fields, Math. Comp., 1137-1152 (1974) · Zbl 0307.12005 · doi:10.2307/2005372
[37] Silverman, Joseph H., The arithmetic of elliptic curves, Graduate Texts in Mathematics, xx+513 pp. (2009), Springer, Dordrecht · Zbl 1194.11005 · doi:10.1007/978-0-387-09494-6
[38] Stevenhagen, Peter, The number of real quadratic fields having units of negative norm, Experiment. Math., 121-136 (1993) · Zbl 0792.11041
[39] Taylor, M., Galois module structure of classgroups and units, Mathematika, 156-160 (1975) · Zbl 0322.12010 · doi:10.1112/S002557930000601X
[40] Washington, Lawrence C., Class numbers of the simplest cubic fields, Math. Comp., 371-384 (1987) · Zbl 0613.12002 · doi:10.2307/2007897
[41] Wood, Melanie Matchett, On the probabilities of local behaviors in abelian field extensions, Compos. Math., 102-128 (2010) · Zbl 1242.11081 · doi:10.1112/S0010437X0900431X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.