×

El Naschie’s Cantorian frames, gravitation and quantum mechanics. (English) Zbl 1077.81516

Summary: A frame is characterized by a hermitic operator with independent of direction eigenvalues. For a particular type of frames (El Naschie’s frame), the hermitic operator eigenvalues may be put in correspondence with a Cantor set. This is the situation when the used coordinates, could be some values directly measurable for instance, via the mass spectrum of high energy particle physics. By using the Cayleyene metric associated to the hermitic operator and to Ernst’s equations, the generalized hyperbolic stationary metrics is obtained. When imposing on the metrics the conform Minkowskian character, we obtain both the inertial nature of the Universe expansion and, by the gravitational coupling constant, the correspondence with \({\mathcal E}^{(\infty)}\) space-time. The quantum mechanics in the form of a Schrödinger type equation with complex eigenvalues appears in the process of frames synchronization.

MSC:

81R50 Quantum groups and related algebraic methods applied to problems in quantum theory
81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
83F05 Relativistic cosmology
Full Text: DOI

References:

[1] Agop, M.; Mazilu, N., Fundamente ale fizicii moderne (1989), Junimea: Junimea Iaşi
[2] Agop, M.; Ciobanu, G.; Zaharia, L., Cantorian \(ε^{(∞)}\) space-time, frames and unitary theories, Chaos, Solitons & Fractals, 15, 445 (2003) · Zbl 1098.83573
[3] (El Naschie, M. S.; Rossler, O. E.; Prigogine, I., Quantum mechanics, diffusion and chaotic fractal (1995), Elsevier: Elsevier Oxford) · Zbl 0830.58001
[4] Bohm, D.; Bub, J., Rev. Mod. Phys, 38, 453 (1996)
[5] Mandelbrot, B. B., The fractal geometry and the nature (1983), Freeman: Freeman New York · Zbl 1194.30028
[6] Gouyet, J. F., Physique et stuctures fractales (1992), Masson: Masson Paris · Zbl 0773.58015
[7] El Naschie, M. S., Small world network, \(ε^{(∞)}\) topology and the mass spectrum of high energy particle physics, Chaos, Solitons & Fractals, 19, 689 (2004) · Zbl 1135.82301
[8] El Naschie, M. S., Int. J. Theor. Phys, 37, 12 (1998) · Zbl 0935.58005
[9] El Naschie, M. S., A review of \(ε^{(∞)}\) theory and the mass spectrum of high energy particle physics, Chaos, Solitons & Fractals, 19, 209-236 (2004) · Zbl 1071.81501
[10] El Naschie, M. S., Nonlinear dynamics and infinite dimensional topology in high energy particle physics, Chaos, Solitons & Fractals, 17, 591 (2003) · Zbl 1033.37501
[11] Mihăileanu, N., Geometrie analitică, proiectivă şi diferenţială. Complemente (1972), Didactică şi pedagogică: Didactică şi pedagogică Bucureşti · Zbl 0258.50001
[12] Gogala, B., Int. J. Theor. Phys, 19, 573 (1980) · Zbl 0447.53012
[13] Dumitru, S., Microfizica (1984), Dacia: Dacia Cluj-Napoca
[14] Ionescu Pallas, N., Relativitatea Generală şi Cosmologie (1980), Ştiinifică şi Enciclopedică: Ştiinifică şi Enciclopedică Bucureşti
[15] Gottlieb, I.; Agop, M.; Jarcău, M., El Naschie’ Cantorian space-time and general relativity by means of Barbilian’s group, Chaos, Solitons & Fractals, 19, 705 (2004) · Zbl 1064.83538
[16] Barbilian, D., Opera Didactică, vols. I-III (1968), Tehnică: Tehnică Bucureşti, 1971, 1974
[17] Marek-Crnjac, L., On a connection between the VAK, knot theory and El Naschie’s theory of the mass spectrum of high energy elementary particle, Chaos, Solitons & Fractals, 19, 471-478 (2004) · Zbl 1135.82302
[18] El Naschie, M. S., Modular groups in Cantorian \(ε^{(∞)}\) high energy physics, Chaos, Solitons & Fractals, 16, 353 (2002) · Zbl 1035.83503
[19] Agop, M.; Mazilu, N., C.R. Sci. Paris, 304, II, 9-395 (1987) · Zbl 0609.49030
[20] Ureche, V., Universul. Astrofizică (1987), Dacia: Dacia Cluj-Napoca
[21] El Naschie, M. S., Chaos, Solitons & Fractals, 12, 539 (2001) · Zbl 1015.81052
[22] El Naschie, M. S., Chaos, Solitons & Fractals, 12, 617 (2001) · Zbl 1015.81051
[23] Agnesc, A. G.; Festa, R., Phys. Lett. A, 227, 165 (1997)
[24] Casanova, G., L’ Algebre Vectorielle (1979), Mir: Mir Moscow
[25] Sobczyk, G., Acta Phys. Pol, B12, 509 (1981)
[26] Rindler, W., Am. J. Phys, 34, 1174 (1966)
[27] Yamamoto, T., Prog. Theor. Phys, 8, 258 (1952) · Zbl 0049.27401
[28] Vrânceanu, G., Lecţii de geometrie diferenţială, vol. III (1979), Didactică şi Pedagogică: Didactică şi Pedagogică Bucureşti
[29] Carruthers, P.; Nieto, M. M., Rev. Mod. Phys, 40, 411 (1968)
[30] Stoler, D., Phys. Rev. D, 1, 3217 (1970)
[31] De Broglie, L., La thermodinamique de la particule isolée (1966), Ganthier-Villars: Ganthier-Villars Paris
[32] Wilhelm, H. E., Phys. Rev. D, 1, 2278 (1970) · Zbl 0195.28201
[33] Jaynes, E. T., Found. Phys, 3, 477 (1973)
[34] Beju, I.; Sos, E.; Teodorescu, P. P., Tehnici de calcul tensorial euclidian cu aplicaţii (1977), Tehnică: Tehnică Bucureşti
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.