×

Causal structure of the entanglement renormalization ansatz. (English) Zbl 1451.81062

Summary: We show that the multiscale entanglement renormalization ansatz (MERA) can be reformulated in terms of a causality constraint on discrete quantum dynamics. This causal structure is that of de Sitter space with a flat space-like boundary, where the volume of a spacetime region corresponds to the number of variational parameters it contains. This result clarifies the nature of the ansatz, and suggests a generalization to quantum field theory. It also constitutes an independent justification of the connection between MERA and hyperbolic geometry which was proposed as a concrete implementation of the AdS-CFT correspondence.

MSC:

81P40 Quantum coherence, entanglement, quantum correlations
81P42 Entanglement measures, concurrencies, separability criteria
81T35 Correspondence, duality, holography (AdS/CFT, gauge/gravity, etc.)

References:

[1] Vidal G 2008 Class of quantum many-body states that can be efficiently simulated Phys. Rev. Lett.101 110501 · doi:10.1103/PhysRevLett.101.110501
[2] Vidal G 2007 Entanglement renormalization Phys. Rev. Lett.99 220405 · doi:10.1103/PhysRevLett.99.220405
[3] Evenbly G and Vidal G 2009 Algorithms for entanglement renormalization Phys. Rev. B 79 144108 · Zbl 1310.82021 · doi:10.1103/PhysRevB.79.144108
[4] Giovannetti V, Montangero S, Rizzi M and Fazio R 2009 Homogeneous multiscale-entanglement-renormalization-ansatz states: an information theoretical analysis Phys. Rev. A 79 052314 · doi:10.1103/PhysRevA.79.052314
[5] Vidal G 2009 Entanglement renormalization: an introduction arXiv:0912.1651
[6] Cincio L, Dziarmaga J and Rams M M 2008 Multiscale entanglement renormalization ansatz in two dimensions: quantum Ising model Phys. Rev. Lett.100 240603 · doi:10.1103/PhysRevLett.100.240603
[7] Evenbly G and Vidal G 2009 Entanglement renormalization in two spatial dimensions Phys. Rev. Lett.102 180406 · doi:10.1103/PhysRevLett.102.180406
[8] Evenbly G and Vidal G 2010 Frustrated antiferromagnets with entanglement renormalization: ground state of the spin-(1)/(2) Heisenberg model on a Kagome lattice Phys. Rev. Lett.104 187203 · doi:10.1103/PhysRevLett.104.187203
[9] Corboz P, Evenbly G, Verstraete F and Vidal G 2010 Simulation of interacting fermions with entanglement renormalization Phys. Rev. A 81 010303 · doi:10.1103/PhysRevA.81.010303
[10] Pineda C, Barthel T and Eisert J 2010 Unitary circuits for strongly correlated fermions Phys. Rev. A 81 050303 · doi:10.1103/PhysRevA.81.050303
[11] Beny C and Osborne T J 2013 in preparation
[12] Swingle B 2012 Entanglement renormalization and holography Phys. Rev. D 86 065007 · doi:10.1103/PhysRevD.86.065007
[13] Evenbly G and Vidal G 2011 Tensor network states and geometry J. Stat. Phys.145 891-918 · Zbl 1231.82021 · doi:10.1007/s10955-011-0237-4
[14] Haegeman J, Osborne T J, Verschelde H and Verstraete F 2011 Entanglement renormalization for quantum fields arXiv:1102.5524
[15] Beckman D, Gottesman D, Nielsen M A and Preskill J 2001 Causal and localizable quantum operations Phys. Rev. A 64 052309 · doi:10.1103/PhysRevA.64.052309
[16] Arrighi P, Nesme V and Werner R 2011 Unitarity plus causality implies localizability J. Comput. Syst. Sci.77 372-8 · Zbl 1210.81067 · doi:10.1016/j.jcss.2010.05.004
[17] Arrighi P, Fargetton R, Nesme V and Thierry E 2011 Applying causality principles to the axiomatization of probabilistic cellular automata Models of Computation in Context(Lecture Notes in Computer Science vol 6735) (Berlin: Springer) pp 1-10 · Zbl 1345.68224 · doi:10.1007/978-3-642-21875-0_1
[18] Bombelli L, Lee J, Meyer D and Sorkin R D 1987 Space – time as a causal set Phys. Rev. Lett.59 521-4 · doi:10.1103/PhysRevLett.59.521
[19] Hawkins E, Markopoulou F and Sahlmann H 2003 Evolution in quantum causal histories Class. Quantum Grav.20 3839-54 · Zbl 1045.83033 · doi:10.1088/0264-9381/20/16/320
[20] Kempf A and Niemeyer J C 2001 Perturbation spectrum in inflation with a cutoff Phys. Rev. D 64 103501 · doi:10.1103/PhysRevD.64.103501
[21] Pfeifer R N C, Evenbly G and Vidal G 2009 Entanglement renormalization, scale invariance, and quantum criticality Phys. Rev. A 79 040301 · doi:10.1103/PhysRevA.79.040301
[22] Dawson C M, Eisert J and Osborne T J 2008 Unifying variational methods for simulating quantum many-body systems Phys. Rev. Lett.100 130501 · Zbl 1228.82080 · doi:10.1103/PhysRevLett.100.130501
[23] Rizzi M, Montangero S and Vidal G 2008 Simulation of time evolution with multiscale entanglement renormalization ansatz Phys. Rev. A 77 052328 · doi:10.1103/PhysRevA.77.052328
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.