×

Loop quantum gravity’s boundary maps. (English) Zbl 1482.83079

Summary: In canonical quantum gravity, the presence of spatial boundaries naturally leads to boundary quantum states, representing quantum boundary conditions for the bulk fields. As a consequence, quantum states of the bulk geometry need to be upgraded to wave-functions valued in the boundary Hilbert space: the bulk becomes quantum operator acting on boundary states. We apply this to loop quantum gravity and describe spin networks with 2d boundary as wave-functions mapping bulk holonomies to spin states on the boundary. This sets the bulk-boundary relation in a clear mathematical framework, which allows to define the boundary density matrix induced by a bulk spin network states after tracing out the bulk degrees of freedom. We ask the question of the bulk reconstruction and prove a boundary-to-bulk universal reconstruction procedure, to be understood as a purification of the mixed boundary state into a pure bulk state. We further perform a first investigation in the algebraic structure of induced boundary density matrices and show how correlations between bulk excitations, i.e. quanta of 3d geometry, get reflected into the boundary density matrix.

MSC:

83C57 Black holes
83C60 Spinor and twistor methods in general relativity and gravitational theory; Newman-Penrose formalism
57R15 Specialized structures on manifolds (spin manifolds, framed manifolds, etc.)
81T35 Correspondence, duality, holography (AdS/CFT, gauge/gravity, etc.)
58J32 Boundary value problems on manifolds
81P16 Quantum state spaces, operational and probabilistic concepts
68Q12 Quantum algorithms and complexity in the theory of computing
81P68 Quantum computation

References:

[1] Gaul, M.; Rovelli, C., Loop quantum gravity and the meaning of diffeomorphism invariance, Lect. Notes Phys., 541, 277-324 (2000) · Zbl 0973.83027
[2] Thiemann, T., Modern Canonical Quantum General Relativity (2007), Cambridge: Cambridge University Press, Cambridge · Zbl 1129.83004
[3] Rovelli, C.; Vidotto, F., Covariant Loop Quantum Gravity: An Elementary Introduction to Quantum Gravity and Spinfoam Theory, p 11 (2014), Cambridge: Cambridge University Press, Cambridge · Zbl 1432.81065
[4] Bodendorfer, N., An elementary introduction to loop quantum gravity (2016) · Zbl 1342.83521
[5] Holst, S., Barbero’s Hamiltonian derived from a generalized Hilbert-Palatini action, Phys. Rev. D, 53, 5966-5969 (1996) · doi:10.1103/physrevd.53.5966
[6] Rovelli, C.; Smolin, L.; Rovelli, C.; Smolin, L., Discreteness of area and volume in quantum gravity, Nucl. Phys. B. Nucl. Phys. B, 456, 753-754 (1995) · Zbl 0925.83013 · doi:10.1016/0550-3213(95)00550-5
[7] Ashtekar, A.; Lewandowski, J., Quantum theory of geometry: I. Area operators, Class. Quantum Grav., 14, A55-A81 (1997) · Zbl 0866.58077 · doi:10.1088/0264-9381/14/1a/006
[8] Ashtekar, A.; Lewandowski, J., Quantum theory of geometry. 2. Volume operators, Adv. Theor. Math. Phys., 1, 388-429 (1998) · Zbl 0903.58067 · doi:10.4310/atmp.1997.v1.n2.a8
[9] Thiemann, T., Quantum spin dynamics (QSD), Class. Quantum Grav., 15, 839-873 (1998) · Zbl 0956.83013 · doi:10.1088/0264-9381/15/4/011
[10] Thiemann, T., Quantum spin dynamics (qsd). 2, Class. Quantum Grav., 15, 875-905 (1998) · Zbl 0956.83013 · doi:10.1088/0264-9381/15/4/012
[11] Reisenberger, M. P.; Rovelli, C., ‘Sum over surfaces’ form of loop quantum gravity, Phys. Rev. D, 56, 3490-3508 (1997) · doi:10.1103/physrevd.56.3490
[12] Baez, J. C., Spin foam models, Class. Quantum Grav., 15, 1827-1858 (1998) · Zbl 0932.83014 · doi:10.1088/0264-9381/15/7/004
[13] Barrett, J. W.; Crane, L., Relativistic spin networks and quantum gravity, J. Math. Phys., 39, 3296-3302 (1998) · Zbl 0967.83006 · doi:10.1063/1.532254
[14] Freidel, L.; Krasnov, K., Spin foam models and the classical action principle, Adv. Theor. Math. Phys., 2, 1183-1247 (1999) · Zbl 0948.83024 · doi:10.4310/atmp.1998.v2.n6.a1
[15] Livine, E. R., The spinfoam framework for quantum gravity, PhD Thesis (2010), Lyon
[16] Dupuis, M., Spin foam models for quantum gravity and semi-classical limit, PhD Thesis (2010), Lyon
[17] Perez, A., The spin foam approach to quantum gravity, Living Rev. Relativ., 16 (2013) · Zbl 1320.83008 · doi:10.12942/lrr-2013-3
[18] De Pietri, R.; Freidel, L.; Krasnov, K.; Rovelli, C., Barrett-Crane model from a Boulatov-Ooguri field theory over a homogeneous space, Nucl. Phys. B, 574, 785-806 (2000) · Zbl 0992.83017 · doi:10.1016/s0550-3213(00)00005-5
[19] Reisenberger, M. P.; Rovelli, C., Spacetime as a Feynman diagram: the connection formulation, Class. Quantum Grav., 18, 121-140 (2001) · Zbl 0977.83015 · doi:10.1088/0264-9381/18/1/308
[20] Freidel, L., Group field theory: an overview, Int. J. Theor. Phys., 44, 1769-1783 (2005) · Zbl 1100.83010 · doi:10.1007/s10773-005-8894-1
[21] Oriti, D., The group field theory approach to quantum gravity (2006) · Zbl 1223.83025
[22] Carrozza, S., Tensorial methods and renormalization in group field theories, PhD Thesis (2013)
[23] Oriti, D., Group field theory and loop quantum gravity, p 8 (2014) · Zbl 1195.83045
[24] Freidel, L.; Livine, E.; Pranzetti, D., Gravitational edge modes: from Kac-Moody charges to Poincaré networks, Class. Quantum Grav., 36 (2019) · Zbl 1478.83089 · doi:10.1088/1361-6382/ab40fe
[25] Freidel, L.; Geiller, M.; Pranzetti, D., Edge modes of gravity. Part I. Corner potentials and charges, J. High Energy Phys. (2020) · Zbl 1460.83030 · doi:10.1007/jhep11(2020)026
[26] Freidel, L.; Geiller, M.; Pranzetti, D., Edge modes of gravity. Part II. Corner metric and Lorentz charges, J. High Energy Phys. (2020) · Zbl 1456.83024 · doi:10.1007/jhep11(2020)027
[27] Freidel, L.; Geiller, M.; Pranzetti, D., Edge modes of gravity. Part III. Corner simplicity constraints, J. High Energy Phys. (2021) · Zbl 1459.83016 · doi:10.1007/jhep01(2021)100
[28] Livine, E. R., From coarse-graining to holography in loop quantum gravity, Europhys. Lett., 123 (2018) · doi:10.1209/0295-5075/123/10001
[29] Donnelly, W.; Freidel, L., Local subsystems in gauge theory and gravity, J. High Energy Phys. (2016) · Zbl 1390.83016 · doi:10.1007/jhep09(2016)102
[30] Riello, A., Edge modes without edge modes (2021)
[31] Ashtekar, A.; Lewandowski, J., Projective techniques and functional integration for gauge theories, J. Math. Phys., 36, 2170-2191 (1995) · Zbl 0844.58009 · doi:10.1063/1.531037
[32] Thiemann, T., Modern canonical quantum general relativity (2001)
[33] Borissov, R.; Pietri, R. D.; Rovelli, C., Matrix elements of Thiemann’s Hamiltonian constraint in loop quantum gravity, Class. Quantum Grav., 14, 2793-2823 (1997) · Zbl 0891.58041 · doi:10.1088/0264-9381/14/10/008
[34] Gaul, M.; Rovelli, C., A generalized Hamiltonian constraint operator in loop quantum gravity and its simplest Euclidean matrix elements, Class. Quantum Grav., 18, 1593-1624 (2001) · Zbl 0984.83027 · doi:10.1088/0264-9381/18/9/301
[35] Assanioussi, M.; Lewandowski, J.; Mäkinen, I., New scalar constraint operator for loop quantum gravity, Phys. Rev. D, 92 (2015) · doi:10.1103/physrevd.92.044042
[36] Freidel, L.; Perez, A.; Pranzetti, D., Loop gravity string, Phys. Rev. D, 95 (2017) · doi:10.1103/physrevd.95.106002
[37] Freidel, L.; Livine, E. R., Bubble networks: framed discrete geometry for quantum gravity, Gen. Relativ. Gravit., 51, 9 (2019) · Zbl 1409.83063 · doi:10.1007/s10714-018-2493-y
[38] Feller, A.; Livine, E. R., Quantum surface and intertwiner dynamics in loop quantum gravity, Phys. Rev. D, 95 (2017) · doi:10.1103/physrevd.95.124038
[39] Freidel, L.; Livine, E. R., The fine structure of SU(2) intertwiners from U(N) representations, J. Math. Phys., 51 (2010) · Zbl 1312.83017 · doi:10.1063/1.3473786
[40] Borja, E. F.; Freidel, L.; Garay, I.; Livine, E. R., U(N) tools for loop quantum gravity: the return of the spinor, Class. Quantum Grav., 28 (2011) · Zbl 1211.83013 · doi:10.1088/0264-9381/28/5/055005
[41] Livine, E.; Tambornino, J., Spinor representation for loop quantum gravity, J. Math. Phys., 53 (2012) · Zbl 1273.83073 · doi:10.1063/1.3675465
[42] Dupuis, M.; Speziale, S.; Tambornino, J., Spinors and twistors in loop gravity and spin foams, p 021 (2011)
[43] Livine, E. R.; Tambornino, J., Holonomy operator and quantization ambiguities on spinor space, Phys. Rev. D, 87 (2013) · doi:10.1103/physrevd.87.104014
[44] Alesci, E.; Dapor, A.; Lewandowski, J.; Mäkinen, I.; Sikorski, J., Coherent state operators in loop quantum gravity, Phys. Rev. D, 92 (2015) · doi:10.1103/physrevd.92.104023
[45] Bianchi, E.; Hackl, L.; Yokomizo, N., Entanglement entropy of squeezed vacua on a lattice, Phys. Rev. D, 92 (2015) · doi:10.1103/physrevd.92.085045
[46] Bianchi, E.; Guglielmon, J.; Hackl, L.; Yokomizo, N., Squeezed vacua in loop quantum gravity (2016)
[47] Freidel, L.; Livine, E. R., Spin networks for noncompact groups, J. Math. Phys., 44, 1322-1356 (2003) · Zbl 1062.81072 · doi:10.1063/1.1521522
[48] Livine, E. R.; Terno, D. R., Reconstructing quantum geometry from quantum information: area renormalisation, coarse-graining and entanglement on spin networks (2006)
[49] Livine, E. R.; Terno, D. R., Bulk entropy in loop quantum gravity, Nucl. Phys. B, 794, 138-153 (2008) · Zbl 1273.83072 · doi:10.1016/j.nuclphysb.2007.10.027
[50] Livine, E. R.; Terno, D. R., The Entropic boundary law in BF theory, Nucl. Phys. B, 806, 715-734 (2009) · Zbl 1192.83009 · doi:10.1016/j.nuclphysb.2008.08.004
[51] Livine, E. R., Deformation operators of spin networks and coarse-graining, Class. Quantum Grav., 31 (2014) · Zbl 1291.83111 · doi:10.1088/0264-9381/31/7/075004
[52] Charles, C.; Livine, E. R., The fock space of loopy spin networks for quantum gravity, Gen. Relativ. Gravit., 48, 113 (2016) · Zbl 1381.83002 · doi:10.1007/s10714-016-2107-5
[53] Anzà, F.; Chirco, G., Typicality in spin-network states of quantum geometry, Phys. Rev. D, 94 (2016) · doi:10.1103/physrevd.94.084047
[54] Deutsch, D., Quantum computational networks, Proc. R. Soc. A, 425, 73-90 (1989) · Zbl 0691.68054 · doi:10.1098/rspa.1989.0099
[55] Nielsen, M. A.; Chuang, I. L., Quantum Computation and Quantum Information (2010), Cambridge: Cambridge University Press, Cambridge · Zbl 1288.81001
[56] Cohen, L.; Brady, A. J.; Huang, Z.; Liu, H.; Qu, D.; Dowling, J. P.; Han, M., Efficient simulation of loop quantum gravity—a scalable linear-optical approach, Phys. Rev. Lett., 126 (2021) · doi:10.1103/physrevlett.126.020501
[57] Markopoulou, F., Quantum causal histories, Class. Quantum Grav., 17, 2059-2072 (2000) · Zbl 1035.81504 · doi:10.1088/0264-9381/17/10/302
[58] Hawkins, E.; Markopoulou, F.; Sahlmann, H., Evolution in quantum causal histories, Class. Quantum Grav., 20, 3839 (2003) · Zbl 1045.83033 · doi:10.1088/0264-9381/20/16/320
[59] Bianchi, E.; Haggard, H. M.; Rovelli, C., The boundary is mixed, Gen. Relativ. Gravit., 49, 100 (2017) · Zbl 1397.83007 · doi:10.1007/s10714-017-2263-2
[60] Livine, E. R., Intertwiner entanglement on spin networks, Phys. Rev. D, 97 (2018) · doi:10.1103/physrevd.97.026009
[61] Feller, A.; Livine, E. R., Surface state decoherence in loop quantum gravity, a first toy model, Class. Quantum Grav., 34 (2017) · Zbl 1358.83033 · doi:10.1088/1361-6382/aa525c
[62] Livine, E. R., Area propagator and boosted spin networks in loop quantum gravity, Class. Quantum Grav., 36 (2019) · Zbl 1478.83094 · doi:10.1088/1361-6382/ab32d4
[63] Donnelly, W., Entanglement entropy in loop quantum gravity, Phys. Rev. D, 77 (2008) · doi:10.1103/physrevd.77.104006
[64] Donnelly, W., Decomposition of entanglement entropy in lattice gauge theory, Phys. Rev. D, 85 (2012) · doi:10.1103/physrevd.85.085004
[65] Donnelly, W., Entanglement entropy and nonabelian gauge symmetry, Class. Quantum Grav., 31 (2014) · Zbl 1304.81121 · doi:10.1088/0264-9381/31/21/214003
[66] Ashtekar, A.; Baez, J.; Corichi, A.; Krasnov, K., Quantum geometry and black hole entropy, Phys. Rev. Lett., 80, 904-907 (1998) · Zbl 0949.83024 · doi:10.1103/physrevlett.80.904
[67] Domagala, M.; Lewandowski, J., Black-hole entropy from quantum geometry, Class. Quantum Grav., 21, 5233-5243 (2004) · Zbl 1062.83053 · doi:10.1088/0264-9381/21/22/014
[68] Livine, E. R.; Terno, D. R., Quantum black holes: entropy and entanglement on the horizon, Nucl. Phys. B, 741, 131-161 (2006) · Zbl 1214.83019 · doi:10.1016/j.nuclphysb.2006.02.012
[69] Agullo, I.; Fernando Barbero, G. J.; Borja, E. F.; Diaz-Polo, J.; Villasenor, E. J S., The combinatorics of the SU(2) black hole entropy in loop quantum gravity, Phys. Rev. D, 80 (2009) · doi:10.1103/physrevd.80.084006
[70] Livine, E. R.; Terno, D. R., Entropy in the classical and quantum polymer black hole models, Class. Quantum Grav., 29 (2012) · Zbl 1266.83121 · doi:10.1088/0264-9381/29/22/224012
[71] Asin, O.; Ben Achour, J.; Geiller, M.; Noui, K.; Perez, A., Black holes as gases of punctures with a chemical potential: Bose-Einstein condensation and logarithmic corrections to the entropy, Phys. Rev. D, 91 (2015) · doi:10.1103/physrevd.91.084005
[72] Choi, M-D, Completely positive linear maps on complex matrices, Linear Algebr. Appl., 10, 285-290 (1975) · Zbl 0327.15018 · doi:10.1016/0024-3795(75)90075-0
[73] Wilde, M. M., From classical to quantum Shannon theory (2011)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.