×

Generic motives. (Motifs génériques.) (French) Zbl 1207.14011

V. Voevodsky in [Triangulated categories of motives over a field. Cycles, transfers, and motivic homology theories. Princeton, NJ: Princeton University Press. Ann. Math. Stud. 143, 188–238 (2000; Zbl 1019.14009)] has constructed the triangulated category of geometric mixed motives \(DM_{gm}(k)\) over a perfect field \(k\). The main purpose of the theory of generic motives developed by the author is to show that every mixed motive defines canonically a cycle module in the sense of M. Rost [Doc. Math., J. DMV 1, 319–393 (1996; Zbl 0864.14002)]. Let \({\mathcal E}_k\) be the category of function fields, i.e of finite extensions of the field \(k\). For a function field \(E\) the generic motive of \(EM_{gm}(E)\) is the pro-object given by all smooth schemes whose function field is \(E\). The class of all models of \(E\) admits a final object given by all \(\sup k\)-algebras of finite type \(A\) of \(E\) such that \(\text{Spec\,}A\) is smooth. Let’s denote it by \(M^{sm}(E/k)\). If \(E\) is a a function field and \(n\) an integer one defines \(M_{gm}(E)\{n\}\) as the pro-object in \(DM_{gm}(k)\), \[ M_{gm(E)}\{n\}= \lim_{A\in M^{sm}(E/k)} M_{gm}(\text{Spec\,}A)\{n\}, \] where, for a motivic complex \(M\), \(M\{n\}= \mathbb{Z}(n)[n]\otimes M\).
Another interpretation of generic motives is to define the evaluation of a Nisnevich sheaf with transfer \(F\), invariant by homotopy, on a function field \(E\): if \(X\) is a model for \(E\) this evaluation is the fiber of the sheaf \(F\) at the generic point of \(X_{Nis}\). The evaluation of \(F\) on a generic motive \(M_{gm}(E)\{n\}\) for \(n> 0\) yields an exact functor which commutes with arbitrary direct sums, hence a fibered functor.
Then the main consequence of the theory developed by the author is the following result
Theorem 1. Let \(\phi:DM^{op}_{gm}\to{\mathcal A}\) be an additive functor, where \({\mathcal A}\) denotes the category of Abelian groups. For all couples \((i,r)\), with \(i,r\in\mathbb{Z}\), and all function fields \(E\) define \[ K^{\phi,r}_i(E)= \lim_{A\in M^{sm}(E/k)} \phi(M_{gm}(\text{Spec\,}A)\{-i\}(-r). \] Then, for all \(r\in\mathbb{Z}\), \(K^{\phi,r}_*\) has the canonical structure of a cycle module.
In the case \(\phi\) is the functor induced by a homotopic sheaf \(F\) one gets a functor from homotopic sheaves to cycle modules. The author announces that, according to a further result of his, this functor induces an equivalence of categories between the stable category of homotopic sheaves and the category of cycle modules.
If a cohomological theory \(H^*:{\mathcal L}^{op}_k\to{\mathcal A}\), where \({\mathcal L}\) is the additive category of smooth schemes over \(k\) with finite correspondences, extends to a realization functor \(R_H: DM^{op}_{gm}(k)\to{\mathcal A}\) in such a way that \(H^i(X)= R_H(M_{gm}(X)[-i])\), then, according to Theorem 1, it induces a cycle module. Due to a result by A. Huber this is in particular the case for De Rham cohomology: the author announces that the above result also yields the existence of cycle module structure for the rigid cohomology of function fields.

MSC:

14C15 (Equivariant) Chow groups and rings; motives
14F42 Motivic cohomology; motivic homotopy theory

References:

[1] A. BE\?LINSON, Notes on absolute Hodge cohomology, Applications of algebraic K-theory to algebraic geometry and number theory, Part I, II (Boulder, Colo., 1983), Contemp. Math., vol. 55, Amer. Math. Soc., Providence, RI, 1986, pp. 35-68. Zbl0621.14011 MR862628 · Zbl 0621.14011
[2] A. BE\?LINSON, Correction to: “Notes on absolute Hodge cohomology” [Applications of algebraic K-theory to algebraic geometry and number theory, Part I, II (Boulder, Colo., 1983), 35-68, Amer. Math. Soc., Providence, R.I., 1986], K-theory, arithmetic and geometry (Moscow, 1984-1986), Lecture Notes in Math., vol. 1289, Springer, Berlin, 1987, pp. 25-26. Zbl0621.14011 MR862628 · Zbl 0621.14011
[3] A. BE\?LINSON, Remarks on n-motives and correspondences at the generic point, Motives, polylogarithms and Hodge theory, Part I (Irvine, CA, 1998), Int. Press Lect. Ser., vol. 3, Int. Press, Somerville, MA, 2002, pp. 35-46. Zbl1050.14015 MR1977583 · Zbl 1050.14015
[4] F. DÉGLISE, Modules de cycles et motifs mixtes, C. R. Math. Acad. Sci. Paris 336 (2003), no. 1, pp. 41-46. Zbl1042.19001 MR1968900 · Zbl 1042.19001 · doi:10.1016/S1631-073X(02)00026-2
[5] F. DÉGLISE, Interprétation motivique de la formule d’excès d’intersection, C. R. Math. Acad. Sci. Paris 338 (2004), no. 1, pp. 41-46. Zbl1048.18004 MR2038082 · Zbl 1048.18004 · doi:10.1016/j.crma.2003.10.005
[6] F. DÉGLISE, Around the gysin triangle, Preprint LAGA 2005-30, June 2005. · Zbl 1330.14028
[7] F. DÉGLISE, Transferts sur les groupes de Chow à coefficients, Math. Z. 252 (2006), no. 2, pp. 315-343. Zbl1095.14009 MR2207800 · Zbl 1095.14009 · doi:10.1007/s00209-005-0855-0
[8] F. DÉGLISE, Finite correspondances and transfers over a regular base, Algebraic cycles and motives (J. Nagel et P. Chris, eds.), Cambridge university press, april 2007. Zbl1149.14014 MR2385302 · Zbl 1149.14014
[9] T. EKEDAHL, On the adic formalism, The Grothendieck Festschrift, Vol. II, Progr. Math., vol. 87, Birkhäuser Boston, Boston, MA, 1990, pp. 197-218. Zbl0821.14010 MR1106899 · Zbl 0821.14010
[10] W. FULTON, Intersection theory, second ed., Springer-Verlag, Berlin, 1998. Zbl0885.14002 MR1644323 · Zbl 0885.14002
[11] A. HUBER, Realization of Voevodsky’s motives, J. Algebraic Geom. 9 (2000), no. 4, pp. 755-799. Zbl0994.14014 MR1775312 · Zbl 0994.14014
[12] A. HUBER, Corrigendum to: “Realization of Voevodsky’s motives” [J. Algebraic Geom. 9 (2000), no. 4, 755-799], J. Algebraic Geom. 13 (2004), no. 1, pp. 195-207. Zbl1058.14033 · Zbl 1058.14033 · doi:10.1090/S1056-3911-03-00374-6
[13] K. KATO, Milnor K-theory and the Chow group of zero cycles, Applications of algebraic K-theory to algebraic geometry and number theory, Part I, II (Boulder, Colo., 1983), Contemp. Math., vol. 55, Amer. Math. Soc., Providence, RI, 1986, pp. 241-253. Zbl0603.14009 MR862638 · Zbl 0603.14009
[14] F. MOREL et V. VOEVODSKY, A1 -homotopy theory of schemes, Inst. Hautes Études Sci. Publ. Math. (1999), no. 90, pp. 45-143 (2001). Zbl0983.14007 MR1813224 · Zbl 0983.14007 · doi:10.1007/BF02698831
[15] M. ROST, Chow groups with coefficients, Doc. Math. 1 (1996), No. 16, pp. 319-393 (electronic). Zbl0864.14002 MR1418952 · Zbl 0864.14002
[16] J.-P. SERRE, Corps locaux, Hermann, Paris, 1968, Deuxième édition, Publications de l’Université de Nancago, No. VIII. MR354618
[17] A. SUSLIN - V. VOEVODSKY, Singular homology of abstract algebraic varieties, Invent. Math. 123 (1996), no. 1, pp. 61-94. Zbl0896.55002 MR1376246 · Zbl 0896.55002 · doi:10.1007/BF01232367
[18] A. SUSLIN - V. VOEVODSKY, Bloch-Kato conjecture and motivic cohomology with finite coefficients, The arithmetic and geometry of algebraic cycles (Banff, AB, 1998), NATO Sci. Ser. C Math. Phys. Sci., vol. 548, Kluwer Acad. Publ., Dordrecht, 2000, pp. 117-189. Zbl1005.19001 MR1744945 · Zbl 1005.19001
[19] V. VOEVODSKY, Cohomological theory of presheaves with transfers, Cycles, transfers, and motivic homology theories, Ann. of Math. Stud., vol. 143, Princeton Univ. Press, Princeton, NJ, 2000, pp. 87-137. Zbl1019.14010 MR1764200 · Zbl 1019.14010
[20] V. VOEVODSKY, Triangulated categories of motives over a field, Cycles, transfers, and motivic homology theories, Ann. of Math. Stud., vol. 143, Princeton Univ. Press, Princeton, NJ, 2000, pp. 188-238. Zbl1019.14009 MR1764202 · Zbl 1019.14009
[21] V. VOEVODSKY, Cancellation theorem, K-theory preprint archive 0541, 2002.
[22] V. VOEVODSKY - A. SUSLIN - E. M. FRIEDLANDER, Cycles, transfers, and motivic homology theories, Annals of Mathematics Studies, vol. 143, Princeton University Press, Princeton, NJ, 2000. Zbl1021.14006 MR1764197 · Zbl 1021.14006
[23] M. ARTIN, A. GROTHENDIECK - J.-L. VERDIER, Théorie des topos et cohomologie étale des schémas, vol. 269,270,305, Springer, 1972-73. MR354653
[24] A. GROTHENDIECK - J. DIEUDONNÉ, Eléments de géométrie algébrique IV, vol. 20, 24, 28, 32, Publ. Math. de l’IHES, 1966. MR217086
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.