×

Dynamic potentials and Green’s functions of a quasi-plane magneto-electro-elastic medium with inclusion. (English) Zbl 1213.74125

Summary: The dynamic potentials of a quasi-plane magneto-electro-elastic medium of transversely isotropic symmetry with an inclusion of arbitrary shape are derived, and the dynamic potentials are finally governed by six scalar equations which can be regarded as inhomogeneous wave equations, Laplace and Helmholtz equations. The explicit expressions of the dynamic Green’s functions of this medium are also obtained both in the space-time domain and in the space-frequency domain. Closed-form expressions for the space-frequency representation of the dynamic potentials are given for the case when the inclusion is circular. The results are employed to obtain the generalized displacement fields of a circular inclusion undergoing uniform eigenstrain, eigenelectric field and eigenmagnetic field. In contrast to the corresponding static Eshelby inclusion problem the magneto-electro-elastic fields (i.e. strain, electric and magnetic field) inside the inclusion are non-uniform in the space-frequency domain.

MSC:

74F15 Electromagnetic effects in solid mechanics
Full Text: DOI

References:

[1] Bracke, L. P.M.; Van Vliet, T. G., A broadband magneto-electric transducer using a composite material, Int. J. Electron., 51, 255-262 (1981)
[2] Avellaneda, M.; Harshe, G., Magneto-electric effect in piezoelectric/magnetostrictive multiplayer (2-2) composites, J. Intell. Mater. Syst. Struct., 5, 501-513 (1994)
[3] Nan, C. W., Magneto-electric effect in composites of piezoelectric and piezomagnetic phases, Phys. Rev. B, B50, 6082-6088 (1994)
[4] Benveniste, Y., Magneto-electric effect in fibrous composites with piezoelectric and piezomagnetic phases, Phys. Rev. B, B51, 16424-16427 (1995)
[5] Fiebig, M., Revival of the magnetoelectric effect, J. Phys. D: Appl. Phys., 38, R123-R152 (2005)
[6] Huang, J. H.; Kuo, W. S., The analysis of piezoelectric/piezomagnetic composite materials containing an ellipsoidal inclusion, J. Appl. Phys., 81, 3, 1378-1386 (1997)
[7] Huang, J. H.; Chiu, Y. H.; Liu, H. K., Magneto-electro-elastic Eshelby tensors for a piezoelectric-piezomagnetic composite reinforced by ellipsoidal inclusions, J. Appl. Phys., 83, 10, 5364-5370 (1998)
[8] Li, J. Y.; Dunn, M. L., Micromechanics of magnetoelectroelastic composite materials: average fields and effective behavior, J. Intell. Mater. Syst. Struct., 7, 404-416 (1998)
[9] Li, J. Y.; Dunn, M. L., Anisotropic coupled field inclusion and inhomogeneity problems, Philos. Mag., 77, 5, 1341-1350 (1998)
[10] Pan, E., Three-dimensional Green’s function in an-isotropic magneto-electro-elastic bi-materials, Z. Angew. Math. Phys., 53, 815-838 (2002) · Zbl 1031.74024
[11] Wang, X.; Shen, Y. P., The general solution of three-dimensional problems in magneto-electro-elastic media, Int. J. Eng. Sci., 40, 1069-1080 (2002) · Zbl 1211.74103
[12] Liu, J. X.; Liu, X. L.; Zhou, Y. B., Green’s functions for anisotropic magnetoelectroelastic solids with an elliptical cavity or a crack, Int. J. Eng. Sci., 39, 1405-1418 (2001) · Zbl 1210.74073
[13] Ding, H. J.; Jiang, A. M.; Hou, P. F.; Chen, W. Q., Green’s functions for two-phase transversely isotropic magneto-electro-elastic media, Eng. Anal. Bound. Elem., 29, 551-561 (2005) · Zbl 1182.74050
[14] Du, J. K.; Shen, Y. P.; Ye, D. Y.; Yue, F. R., Scattering of anti-plane shear waves by a partially debonded magneto-electro-elastic circular cylindrical inhomogeneity, Int. J. Eng. Sci., 42, 887-913 (2004)
[15] Zhou, Z. G.; Wu, L. Z.; Wang, B., The dynamic behavior of two collinear interface cracks in magneto-electro-elastic materials, Eur. J. Mech. A—Solids, 24, 253-262 (2005) · Zbl 1069.74047
[16] Feng, W. J.; Xue, Y.; Zou, Z. Z., Crack growth of an interface crack between two dissimilar magneto-electro-elastic materials under anti-plane mechanical and in-plane electric magnetic impact, Theor. Appl. Fract. Mech., 43, 376-394 (2005)
[17] Talbot, D. R.S.; Willis, J. R., Variational estimates for dispersion and attenuation of waves in random composites III, Int. J. Solids Struct., 19, 793-811 (1983) · Zbl 0516.73027
[18] Bigoni, D.; Capuani, D., Time-harmonic Green’s function and boundary integral formulation for incremental nonlinear elasticity: dynamics of wave patterns and shear bands, J. Mech. Phys. Solids, 53, 1163-1187 (2005) · Zbl 1120.74555
[19] Wang, J. Z.; Michelitsch, T. M.; Gao, H. J.; Levin, V. M., On the solution of the dynamic Eshelby problem for inclusions of various shapes, Int. J. Solids Struct., 42, 353-363 (2005) · Zbl 1143.74326
[20] Wang, X.; Zhong, Z., Two-dimensional time-harmonic dynamic Green’s functions in transversely isotropic piezoelectric solids, Mech. Res. Commun., 30, 589-593 (2003) · Zbl 1049.74559
[21] Norris, A. N., Dynamic Green’s functions in anisotropic piezoelectric, thermoelastic and poroelastic solids, Proc. R. Soc. London A, 447, 175-188 (1994) · Zbl 0813.73054
[22] Michelitsch, T. M.; Levin, V. M.; Gao, H. J., Dynamic potentials and Green’s functions of a quasi-plane piezoelectric medium with inclusion, Proc. R. Soc. London A, 458, 2393-2415 (2002) · Zbl 1041.74023
[23] Wang, J. Z.; Michelitsch, T. M.; Gao, H. J., Dynamic fiber inclusions with elliptical and arbitrary cross-sections and related retarded potentials in a quasi-plane piezoelectric medium, Int. J. Solids Struct., 40, 6307-6333 (2003) · Zbl 1070.74011
[24] Berlincourt, D. A.; Curran, D. R.; Jaffe, H., Piezoelectric and piezomagnetic materials and their function in transducers, Phys. Acoust., 1, 169-270 (1964)
[25] Ma, X. K., (Electromagnetic Theory and its Application (2000), Xi’an Jiaotong University Press: Xi’an Jiaotong University Press Xi’an), 306-313, (in Chinese)
[26] Levin, V. M.; Michelitsch, T. M.; Gao, H. J., Propagation of electroacoustic waves in the transversely isotropic piezoelectric medium reinforced by randomly distributed cylindrical inhomogeneities, Int. J. Solids Struct., 39, 5013-5051 (2002) · Zbl 1087.74571
[27] Mura, T., (Nijhoff, Martinus, Micromechanics of Defects in Solids (1987), The Hague: The Hague Netherlands)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.