×

New MDS self-dual codes from GRS codes and extended GRS codes. (English) Zbl 1529.94053

The article under review focuses on MDS self-dual linear codes, which are codes whose parameters satisfy the Singleton bound, and their dual codes are identical to the codes themselves. Therefore, their parameters are \([n, n/2, n/2 + 1]\).
The article includes a useful table detailing the parameters of known MDS self-dual codes along with their references. Then, the authors construct new MDS self-dual codes using generalized Reed-Solomon codes and extended generalized Reed-Solomon codes.

MSC:

94B05 Linear codes (general theory)
11T71 Algebraic coding theory; cryptography (number-theoretic aspects)
Full Text: DOI

References:

[1] Cramer, R.; Daza, V.; Gracia, I.; Urroz, J. J.; Leander, G.; Marti-Farre, J.; Padro, C., On codes, matroids and secure multi-party computation from linear secret sharing schemes, IEEE Trans. Inf. Theory, 54, 6, 2647-2657 (2008) · Zbl 1184.94252
[2] Dau, S. H.; Song, W.; Dong, Z.; Yuen, C., Balanced sparsest generator matrices for MDS codes, (Proc. of ISIT (2013)), 1889-1893
[3] Grassl, M.; Aaron Gulliver, T., On self-dual MDS codes, (Proc. of ISIT (2008)), 1954-1957
[4] Fang, W.; Fu, F. W., New constructions of MDS Euclidean self-dual codes from GRS codes and extended GRS codes, IEEE Trans. Inf. Theory, 65, 9, 5574-5579 (2019) · Zbl 1432.94167
[5] Massey, J., Some applications of coding theory in cryptography, (Proc. 4th IMA Conf. Cryptogr. Coding (1995)), 33-47
[6] Lebed, K.; Liu, H., Some new constructions of MDS self-dual codes over finite fields, Finite Fields Appl., 77, 101-934 (2022) · Zbl 1501.94090
[7] Jin, L.; Xing, C., New MDS self-dual codes from generalized Reed-Solomon codes, IEEE Trans. Inf. Theory, 63, 3, 1434-1438 (2017) · Zbl 1366.94597
[8] Gulliver, T. A.; Kim, J. L.; Lee, Y., New MDS or near-MDS self-dual codes, IEEE Trans. Inf. Theory, 54, 9, 4354-4360 (2008) · Zbl 1318.94093
[9] Xie, D.; Fang, X.; Luo, J., Construction of long MDS self-dual codes from short codes, Finite Fields Appl., 72, 101-813 (2021) · Zbl 1467.94057
[10] Yan, H., A note on the construction of MDS self-dual codes, Cryptogr. Commun., 11, 2, 259-268 (2019) · Zbl 1409.94929
[11] Georgiou, S.; Koukouvinos, C., MDS self-dual codes over large prime fields, Finite Fields Appl., 8, 4, 455-470 (2002) · Zbl 1022.94015
[12] Kim, J. L.; Lee, Y., Euclidean and Hermitian self-dual MDS codes over large finite fields, J. Comb. Theory, Ser. A, 105, 1, 79-95 (2004) · Zbl 1044.94018
[13] Zhang, A.; Feng, K., A unified approach to construct MDS self-dual codes via Reed-Solomon codes, IEEE Trans. Inf. Theory, 66, 6, 3650-3655 (2020) · Zbl 1448.94282
[14] Lebed, K.; Liu, H.; Luo, J., Construction of MDS self-dual codes over finite fields, Finite Fields Appl., 59, 199-207 (2019) · Zbl 1421.94096
[15] Fang, X.; Lebed, K.; Liu, H.; Luo, J., New MDS self-dual codes over finite fields of odd characteristic, Des. Codes Cryptogr., 88, 2, 1127-1138 (2020) · Zbl 1448.94259
[16] Fang, W.; Fu, F. W., Construction of MDS Euclidean self-dual codes via two subsets, IEEE Trans. Inf. Theory, 67, 8, 5005-5015 (2021) · Zbl 1486.94162
[17] Tong, H.; Wang, X., New MDS Euclidean and Hermitian self-dual codes over finite fields, Adv. Pure Math., 7, 5, 325-333 (2017)
[18] Fang, X.; Liu, M.; Luo, J., New MDS Euclidean self-orthogonal codes, IEEE Trans. Inf. Theory, 67, 1, 130-137 (2021) · Zbl 1465.94105
[19] Lidl, R.; Niederreiter, H., Finite Fields (1997), Cambridge Univ. Press: Cambridge Univ. Press Cambridge, UK
[20] Fang, W.; Zhang, J.; Xia, S. T.; Fu, F. W., New constructions of self-dual generalized Reed-Solomon codes, Cryptogr. Commun., 14, 3, 677-690 (2022) · Zbl 1501.94081
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.