×

Admissible vectors and Hilbert algebras. (English) Zbl 1464.43005

Summary: Admissible vectors for unitary representations of locally compact groups are the basis for group frame and covariant coherent state expansions. Main tools in the study of admissible vectors have been Plancherel and central integral decompositions, of applicability only under certain separability and semifiniteness restrictions. In this work, we present a study of admissible vectors in terms of convolution Hilbert algebras valid for arbitrary unitary representations of general locally compact groups.

MSC:

43A65 Representations of groups, semigroups, etc. (aspects of abstract harmonic analysis)
47L30 Abstract operator algebras on Hilbert spaces
46K15 Hilbert algebras

References:

[1] Ali, ST; Antoine, J-P; Gazeau, J-P, Coherent states, wavelets, and their generalizations. Theoretical and Mathematical Physics (2014), New York: Springer, New York · Zbl 1440.81006
[2] Ali, TS; Führ, H.; Krasowska, AE, Plancherel inversion as unified approach to wavelet transforms and Wigner functions, Ann. Henri Poincaré, 4, 6, 1015-1050 (2003) · Zbl 1049.81043
[3] Ambrose, W., The \(L_2\)-system of a unimodular group, I. Trans. Am. Math. Soc., 65, 27-48 (1949) · Zbl 0032.35601
[4] Aronszajn, N., Theory of reproducing kernels, Trans. Am. Math. Soc., 68, 337-404 (1950) · Zbl 0037.20701
[5] Barbieri, D.; Hernández, E.; Parcet, J., Riesz and frame systems generated by unitary actions of discrete groups, Appl. Comput. Harmon. Anal., 39, 3, 369-399 (2015) · Zbl 1440.42145
[6] Bekka, B., Square integrable representations, von Neumann algebras and an application to Gabor analysis, J. Fourier Anal. Appl., 10, 4, 325-349 (2004) · Zbl 1064.46058
[7] Bratteli, O., Robinson, D. W.: Operator algebras and quantum statistical mechanics. \(1.C^*\)- and \(W^*\)-algebras, symmetry groups, decomposition of states, second ed. Texts and Monographs in Physics. Springer-Verlag, New York, (1987) · Zbl 0905.46046
[8] Carey, AL, Square-integrable representations of non-unimodular groups, Bull. Aust. Math. Soc., 15, 1, 1-12 (1976) · Zbl 0327.22008
[9] Carey, AL, Induced representations, reproducing kernels and the conformal group, Comm. Math. Phys., 52, 1, 77-101 (1977) · Zbl 0339.43007
[10] Carey, AL, Group representations in reproducing kernel Hilbert spaces, Rep. Math. Phys., 14, 2, 247-259 (1978) · Zbl 0418.22004
[11] Christensen, O.: Frames and bases. Applied and numerical harmonic analysis. An introductory course. Birkhäuser Boston, Inc., Boston, MA, (2008). · Zbl 1152.42001
[12] Dixmier, J., \(C^*\)-algebras (1977), Amsterdam-New York-Oxford: North-Holland Publishing Co., Amsterdam-New York-Oxford · Zbl 0372.46058
[13] Duflo, M.; Moore, CC, On the regular representation of a nonunimodular locally compact group, J. Funct. Anal., 21, 2, 209-243 (1976) · Zbl 0317.43013
[14] Enock, M.; Schwartz, J-M, Kac algebras and duality of locally compact groups (1992), Berlin: Springer, Berlin · Zbl 0805.22003
[15] Eymard, P., L’algèbre de Fourier d’un groupe localement compact, Bull. Soc. Math. France, 92, 181-236 (1964) · Zbl 0169.46403
[16] Folland, GB, A course in abstract harmonic analysis. Studies in Advanced Mathematics (1995), Boca Raton, FL: CRC Press, Boca Raton, FL · Zbl 0857.43001
[17] Führ, H.: Admissible vectors and traces on the commuting algebra. In Group 24: Physical and Mathematical Aspects of Symmetries, vol. 173 of Institute of Physics Conference Series. IOP Publishing, London, UK, (2003), pp. 867-874
[18] Führ, H.: Abstract harmonic analysis of continuous wavelet transforms. Lecture Notes in Mathematics, vol. 1863. Springer, Berlin (2005) · Zbl 1060.43002
[19] Gilmore, R., Geometry of symmetrized states, Ann. Phys., 74, 391-463 (1972)
[20] Godement, R., Les fonctions de type positif et la théorie des groupes, Trans. Am. Math. Soc., 63, 1-84 (1948) · Zbl 0031.35903
[21] Grossmann, A.; Morlet, J.; Paul, T., Transforms associated to square integrable group representations, I. Gen. Results. J. Math. Phys., 26, 10, 2473-2479 (1985) · Zbl 0571.22021
[22] Haagerup, U., The standard form of von Neumann algebras, Math. Scand., 37, 2, 271-283 (1975) · Zbl 0304.46044
[23] Han, D., Larson, D. R.: Frames, bases and group representations. Mem. Amer. Math. Soc. 147, 697 (2000), x+94 · Zbl 0971.42023
[24] Kadison, R. V., Ringrose, J. R.: Fundamentals of the theory of operator algebras. Vol. I. Elementary theory, vol. 100 of Pure and Applied Mathematics. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, (1983) · Zbl 0518.46046
[25] Kadison, R. V., Ringrose, J. R.: Fundamentals of the theory of operator algebras. Vol. II. Advanced theory, vol. 100 of Pure and Applied Mathematics. Academic Press, Inc., Orlando, FL, (1986) · Zbl 0601.46054
[26] Perdrizet, F., Éléments positifs relatifs à une algèbre hilbertienne à gauche, Compos. Math., 23, 25-47 (1971) · Zbl 0208.15903
[27] Perelomov, AM, Coherent states for arbitrary Lie group, Comm. Math. Phys., 26, 222-236 (1972) · Zbl 0243.22016
[28] Perelomov, AM, Generalized coherent states and their applications. Texts and Monographs in Physics (1986), Berlin: Springer, Berlin · Zbl 0605.22013
[29] Phillips, J., Positive integrable elements relative to a left Hilbert algebra, J. Funct. Anal., 13, 390-409 (1973) · Zbl 0262.46055
[30] Phillips, J., A note on square-integrable representations, J. Funct. Anal., 20, 1, 83-92 (1975) · Zbl 0306.46070
[31] Rieffel, MA, Square-integrable representations of Hilbert algebras, J. Functi. Anal., 3, 265-300 (1969) · Zbl 0174.44902
[32] Rieffel, MA, Integrable and proper actions on \(C^*\)-algebras, and square-integrable representations of groups, Expo. Math., 22, 1, 1-53 (2004) · Zbl 1047.22004
[33] Segal, I. E.: An extension of Plancherel’s formula to separable unimodular groups. Ann. of Math. (2) 52, 272-292 (1950) · Zbl 0045.38502
[34] Stetkær, H., Representations, convolution square roots and spherical vectors, J. Funct. Anal., 252, 1, 1-33 (2007) · Zbl 1158.43300
[35] Takesaki, M.: Tomita’s theory of modular Hilbert algebras and its applications. Lecture Notes in Mathematics, vol. 128. Springer, Berlin-New York (1970) · Zbl 0193.42502
[36] Takesaki, M.: Theory of operator algebras. II, vol. 125 of Encyclopaedia of Mathematical Sciences. Springer, Berlin, (2003) · Zbl 1059.46032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.