×

Fourier analysis on the affine group, quantization and noncompact Connes geometries. (English) Zbl 1148.43005

The Stratonovich-Weyl quantizer for the non-unimodular affine group of the line is determined. This provides a noncommutative product of functions on the half-plane, underlying a noncompact spectral triple in the sense of A. Connes [Commun. Math. Phys. 182, No. 1, 155–176 (1996; Zbl 0881.58009)].
It is shown that the corresponding Wigner functions reproduce the time-frequency distributions of signal processing, and that the same construction leads to scalar Fourier transformations on the affine group, simplifying and extending the Fourier transformation proposed by A. A. Kirillov [Lectures on the orbit method. Graduate Studies in Mathematics 64. Providence, RI: Am. Math. Soc. (2004; Zbl 1229.22003)].

MSC:

43A30 Fourier and Fourier-Stieltjes transforms on nonabelian groups and on semigroups, etc.
43A85 Harmonic analysis on homogeneous spaces
58B34 Noncommutative geometry (à la Connes)
81S30 Phase-space methods including Wigner distributions, etc. applied to problems in quantum mechanics

References:

[1] G. S. Agarwal, Relation between atomic coherent-state representation, state multi- poles, and generalized phase-space distributions. Phys. Rev. A 24 (1981), 2889-2896.
[2] S. T. Ali, N. M. Atakishiyev, S. M. Chumakov, and K. B. Wolf, The Wigner function for general Lie groups and the wavelet transform. Ann. Henri Poincaré 1 (2000), 685-714. · Zbl 1024.81015 · doi:10.1007/PL00001012
[3] S. T. Ali, H. Führ, and A. E. Krasowska, Plancherel inversion as unified approach to wavelet transforms and Wigner functions. Ann. Henri Poincaré 4 (2003), 1015-1050. · Zbl 1049.81043 · doi:10.1007/s00023-003-0154-4
[4] P. Aniello, Square integrable projective representations and square integrable represen- tations modulo a relatively central subgroup. Internat. J. Geom. Methods Mod. Phys. 3 (2006), 233-267. · Zbl 1088.22002 · doi:10.1142/S0219887806001132
[5] D. Arnal, The -exponential. In Quantum theories and geometry (Les Treilles, 1987), Math. Phys. Stud. 10, Kluwer Acad. Publ., Dordrecht 1988, 23-51.
[6] D. Arnal and J. C. Cortet, Représentations des groupes exponentiels. J. Funct. Anal. 92 (1990), 103-135. · Zbl 0726.22011 · doi:10.1016/0022-1236(90)90070-2
[7] K. Banaszek and K. Wódkiewicz, Direct probing of quantum phase space by photon counting. Phys. Rev. Lett. 76 (1996), 4344-4347.
[8] C. Bär, Conformal structures in noncommutative geometry. J. Noncommut. Geom. 1 (2007), 385-395. · Zbl 1153.58010 · doi:10.4171/JNCG/11
[9] F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz, and D. Sternheimer, Deformation the- ory and quantization. I. Deformations of symplectic structures. Ann. Physics 111 (1978), 61-110. · Zbl 0377.53024 · doi:10.1016/0003-4916(78)90224-5
[10] J. Bertrand and P. Bertrand, A class of affine Wigner functions with extended covariance properties. J. Math. Phys. 33 (1992), 2515-2527. · Zbl 0787.22022 · doi:10.1063/1.529570
[11] J. Bertrand and P. Bertrand, Symbolic calculus on the time-frequency half-plane. J. Math. Phys. 39 (1998), 4071-4090. · Zbl 0931.94003 · doi:10.1063/1.532484
[12] P. Bieliavsky, Strict quantization of solvable symmetric spaces. J. Symplectic Geom. 1 (2002), 269-320. · Zbl 1032.53080 · doi:10.4310/JSG.2001.v1.n2.a4
[13] P. Bieliavsky, V. Gayral, and B. Iochum. In preparation.
[14] P. Bieliavsky, S. Detournay, P. Spindel, and M. Rooman, Star products on extended massive non-rotating BTZ black holes. J. High Energy Phys. 06 (2004), 031.
[15] C. Brif and A. Mann, A general theory of phase-space quasiprobability distributions. J. Phys. A 31 (1998), L9-L17. · Zbl 0956.81030 · doi:10.1088/0305-4470/31/1/002
[16] M. Cahen, S. Gutt, and J. Rawnsley, Some remarks on the classification of Poisson Lie groups. In Symplectic geometry and quantization (Sanda andYokohama, 1993), Contemp. Math. 179, Amer. Math. Soc., Providence, RI, 1994, 1-16. · Zbl 0820.58018
[17] J. F. Cariñena, M. A. Del Olmo, and M. Santander, Locally operating realizations of trans- formation Lie groups. J. Math. Phys. 26 (1985), 2096-2106. · Zbl 0575.22019 · doi:10.1063/1.526974
[18] J. F. Cariñena, K. Ebrahimi-Fard, H. Figueroa, and J. M. Gracia-Bondía, Hopf algebras in dynamical systems theory. Int. J. Geom. Methods Mod. Phys. 4 (2007), 577-646. · Zbl 1178.37023 · doi:10.1142/S0219887807002211
[19] J. F. Cariñena, J. M. Gracia-Bondía, and J. C. Várilly, Relativistic quantum kinematics in the Moyal representation. J. Phys. A 23 (1990), 901-933. · Zbl 0706.60108 · doi:10.1088/0305-4470/23/6/015
[20] A. Connes, La notion de variété et les axiomes de la géométrie. Course at the Collège de France, January-March 1996.
[21] A. Connes, Gravity coupled with matter and the foundation of non-commutative geometry. Comm. Math. Phys. 182 (1996), 155-176. · Zbl 0881.58009 · doi:10.1007/BF02506388
[22] A. Connes, M. Flato, and D. Sternheimer, Closed star products and cyclic cohomology. Lett. Math. Phys. 24 (1992), 1-12. · Zbl 0767.55005 · doi:10.1007/BF00429997
[23] A. Connes and H. Moscovici, The L2-index theorem for homogeneous spaces of Lie groups. Ann. of Math. (2) 115 (1982), 291-330. · Zbl 0515.58031 · doi:10.2307/1971393
[24] S. Detournay, Deformations of anti-de Sitter black holes. Ph. D. thesis, Université de Mons-Hainaut, Mons 2006;
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.