×

Fracture and singularities of the mass-density gradient field. (English) Zbl 1395.74080

Summary: A continuum mechanical theory of fracture without singular fields is proposed. The primary contribution is the rationalization of the structure of a ‘law of motion’ for crack-tips, essentially as a kinematical consequence and involving topological characteristics. Questions of compatibility arising from the kinematics of the model are explored. The thermodynamic driving force for crack-tip motion in solids of arbitrary constitution is a natural consequence of the model. The governing equations represent a new class of pattern-forming equations.

MSC:

74R10 Brittle fracture
74R20 Anelastic fracture and damage
Full Text: DOI

References:

[1] Acharya, A., Jump condition for GND evolution as a constraint on slip transmission at grain boundaries, Philos. Mag., 87, 1349-1359, (2007) · doi:10.1080/14786430600951537
[2] Acharya, A.; Fressengeas, C.; Chen, G. Q. (ed.); Grinfeld, M. (ed.); Knops, R. J. (ed.), Continuum mechanics of the interaction of phase boundaries and dislocations in solids, No. 137, 125-168, (2015) · Zbl 1325.74116 · doi:10.1007/978-3-319-18573-6_5
[3] Ball, J. M., Discontinuous equilibrium solutions and cavitation in nonlinear elasticity, Philos. Trans. R. Soc., Math. Phys. Eng. Sci., 306, 557-611, (1982) · Zbl 0513.73020 · doi:10.1098/rsta.1982.0095
[4] Barenblatt, G. I., The mathematical theory of equilibrium cracks in brittle fracture, Adv. Appl. Mech., 7, 55-129, (1962) · doi:10.1016/S0065-2156(08)70121-2
[5] Bilby, B. A.; Cottrell, A. H.; Swinden, K. H., The spread of plastic yield from a notch, Proc. R. Soc., Math. Phys. Eng. Sci., 272, 304-314, (1963) · doi:10.1098/rspa.1963.0055
[6] Bourdin, B.; Francfort, G. A.; Marigo, J.-J., Numerical experiments in revisited brittle fracture, J. Mech. Phys. Solids, 48, 797-826, (2000) · Zbl 0995.74057 · doi:10.1016/S0022-5096(99)00028-9
[7] Bourdin, B.; Francfort, G. A.; Marigo, J.-J., The variational approach to fracture, J. Elast., 91, 5-148, (2008) · Zbl 1176.74018 · doi:10.1007/s10659-007-9107-3
[8] Bitzek, E.: Journal Club for November 2016: 3d fracture mechanics at the atomic scale (2016). http://imechanica.org/node/20539 · Zbl 1203.74127
[9] Benzerga, A. A.; Leblond, J.-B., Ductile fracture by void growth to coalescence, Adv. Appl. Mech., 44, 169-305, (2010) · doi:10.1016/S0065-2156(10)44003-X
[10] Borden, M. J.; Verhoosel, C. V.; Scott, M. A.; Hughes, T. J.R.; Landis, C. M., A phase-field description of dynamic brittle fracture, Comput. Methods Appl. Mech. Eng., 217, 77-95, (2012) · Zbl 1253.74089 · doi:10.1016/j.cma.2012.01.008
[11] Dugdale, D. S., Yielding of steel sheets containing slits, J. Mech. Phys. Solids, 8, 100-104, (1960) · doi:10.1016/0022-5096(60)90013-2
[12] Edelen, D.G.B.: Applied Exterior Calculus (1985). Courier Corporation · Zbl 1101.58301
[13] Eshelby, J. D., The determination of the elastic field of an ellipsoidal inclusion, and related problems, Proc. R. Soc., Math. Phys. Eng. Sci., 241, 376-396, (1957) · Zbl 0079.39606 · doi:10.1098/rspa.1957.0133
[14] Francfort, G. A.; Marigo, J.-J., Revisiting brittle fracture as an energy minimization problem, J. Mech. Phys. Solids, 46, 1319-1342, (1998) · Zbl 0966.74060 · doi:10.1016/S0022-5096(98)00034-9
[15] Freund, L.B.: Dynamic Fracture Mechanics. Cambridge University Press, Cambridge (1998) · Zbl 0712.73072
[16] Fressengeas, C.; Taupin, V., A field theory of distortion incompatibility for coupled fracture and plasticity, J. Mech. Phys. Solids, 68, 45-65, (2014) · Zbl 1328.74008 · doi:10.1016/j.jmps.2014.03.009
[17] Garg, A.; Acharya, A.; Maloney, C. E., A study of conditions for dislocation nucleation in coarser-than-atomistic scale models, J. Mech. Phys. Solids, 75, 76-92, (2015) · doi:10.1016/j.jmps.2014.11.001
[18] Gurtin, M. E.; Podio-Guidugli, P., Configurational forces and the basic laws for crack propagation, J. Mech. Phys. Solids, 44, 905-927, (1996) · Zbl 1054.74508 · doi:10.1016/0022-5096(96)00014-2
[19] Hakim, V.; Karma, A., Laws of crack motion and phase-field models of fracture, J. Mech. Phys. Solids, 57, 342-368, (2009) · Zbl 1421.74089 · doi:10.1016/j.jmps.2008.10.012
[20] Ivey, T.A., Landsberg, J.M.: Cartan for Beginners. Graduate Studies in Mathematics, vol. 61 (2003) · Zbl 1105.53001
[21] Kröner, E., Dislocation field theory, 231-256, (1966), Prague
[22] Lamberson, L.: Journal Club for December 2016: Dynamic fracture—when the going gets tough… (2016). http://imechanica.org/node/20656 · Zbl 1037.74049
[23] Lipton, R., Dynamic brittle fracture as a small horizon limit of peridynamics, J. Elast., 117, 21-50, (2014) · Zbl 1309.74065 · doi:10.1007/s10659-013-9463-0
[24] Larsen, C. J.; Ortner, C.; Süli, E., Existence of solutions to a regularized model of dynamic fracture, Math. Models Methods Appl. Sci., 20, 1021-1048, (2010) · Zbl 1425.74418 · doi:10.1142/S0218202510004520
[25] Lopez-Pamies, O.; Idiart, M. I.; Nakamura, T., Cavitation in elastomeric solids: I a defect-growth theory, J. Mech. Phys. Solids, 59, 1464-1487, (2011) · Zbl 1270.74025 · doi:10.1016/j.jmps.2011.04.015
[26] Maiti, S.; Geubelle, P. H., A cohesive model for fatigue failure of polymers, Eng. Fract. Mech., 72, 691-708, (2005) · doi:10.1016/j.engfracmech.2004.06.005
[27] Moës, N.; Gravouil, A.; Belytschko, T., The extended finite element and level set methods for non-planar 3d crack growth, 343-354, (2003), Berlin · Zbl 1037.74049 · doi:10.1007/978-94-017-0297-3_31
[28] Miehe, C.; Hofacker, M.; Welschinger, F., A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits, Comput. Methods Appl. Mech. Eng., 199, 2765-2778, (2010) · Zbl 1231.74022 · doi:10.1016/j.cma.2010.04.011
[29] Miller, R. E.; Rodney, D., On the nonlocal nature of dislocation nucleation during nanoindentation, J. Mech. Phys. Solids, 56, 1203-1223, (2008) · Zbl 1171.74397 · doi:10.1016/j.jmps.2007.10.005
[30] Nabarro, F.R.N.: Theory of Crystal Dislocations. Dover, New York (1987)
[31] Needleman, A., An analysis of tensile decohesion along an interface, J. Mech. Phys. Solids, 38, 289-324, (1990) · doi:10.1016/0022-5096(90)90001-K
[32] Negrón-Marrero, P. V.; Sivaloganathan, J., The radial volume derivative and the critical boundary displacement for cavitation, SIAM J. Appl. Math., 71, 2185-2204, (2011) · Zbl 1448.74021 · doi:10.1137/110835943
[33] Ortiz, M.; Pandolfi, A., Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis, Int. J. Numer. Methods Eng., 44, 1267-1282, (1999) · Zbl 0932.74067 · doi:10.1002/(SICI)1097-0207(19990330)44:9<1267::AID-NME486>3.0.CO;2-7
[34] Pandolfi, A.; Ortiz, M., An eigenerosion approach to brittle fracture, Int. J. Numer. Methods Eng., 92, 694-714, (2012) · Zbl 1352.74299 · doi:10.1002/nme.4352
[35] Park, K.; Paulino, G. H.; Roesler, J. R., A unified potential-based cohesive model of mixed-mode fracture, J. Mech. Phys. Solids, 57, 891-908, (2009) · doi:10.1016/j.jmps.2008.10.003
[36] Roy, Y. A.; Dodds, R. H., Simulation of ductile crack growth in thin aluminum panels using 3-d surface cohesive elements, Int. J. Fract., 110, 21-45, (2001) · doi:10.1023/A:1010816201891
[37] Salvadori, A.; Fantoni, F., Fracture propagation in brittle materials as a standard dissipative process: general theorems and crack tracking algorithms, J. Mech. Phys. Solids, 95, 681-696, (2016) · Zbl 1482.74153 · doi:10.1016/j.jmps.2016.04.034
[38] Sivaloganathan, J., Uniqueness of regular and singular equilibria for spherically symmetric problems of nonlinear elasticity, Arch. Ration. Mech. Anal., 96, 97-136, (1986) · Zbl 0628.73018 · doi:10.1007/BF00251407
[39] Silling, S. A.; Lehoucq, R. B., Peridynamic theory of solid mechanics, Adv. Appl. Mech., 44, 73-168, (2010) · doi:10.1016/S0065-2156(10)44002-8
[40] Sukumar, N.; Moës, N.; Moran, B.; Belytschko, T., Extended finite element method for three-dimensional crack modelling, Int. J. Numer. Methods Eng., 48, 1549-1570, (2000) · Zbl 0963.74067 · doi:10.1002/1097-0207(20000820)48:11<1549::AID-NME955>3.0.CO;2-A
[41] Sendova, T.; Walton, J. R., A new approach to the modeling and analysis of fracture through extension of continuum mechanics to the nanoscale, Math. Mech. Solids, 15, 386-413, (2010) · Zbl 1197.74010 · doi:10.1177/1081286510362457
[42] Trapper, P.; Volokh, K. Y., Elasticity with energy limiters for modeling dynamic failure propagation, Int. J. Solids Struct., 47, 3389-3396, (2010) · Zbl 1203.74127 · doi:10.1016/j.ijsolstr.2010.08.016
[43] Weertman, J.: Dislocation Based Fracture Mechanics. World Scientific, Singapore (1996) · Zbl 0982.74004 · doi:10.1142/3062
[44] Zhang, C., Acharya, A.: On the relevance of generalized disclinations in defect mechanics (2016). Submitted, https://faculty.ce.cmu.edu/acharya/publications · Zbl 0513.73020
[45] Zhang, X.; Acharya, A.; Walkington, N. J.; Bielak, J., A single theory for some quasi-static, supersonic, atomic, and tectonic scale applications of dislocations, J. Mech. Phys. Solids, 84, 145-195, (2015) · Zbl 1481.74097 · doi:10.1016/j.jmps.2015.07.004
[46] Zhang, C., Zhang, X., Acharya, A., Golovaty, D., Walkington, N.J.: A non-traditional view on the modeling of nematic disclination dynamics. Q. Appl. Math., Published electronically, Aug. 18 (2016) · Zbl 1356.76037
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.