×

Self-replicating loop with universal construction. (English) Zbl 1077.68712

Summary: After a survey of the theory and some realizations of self-replicating machines, this paper presents a novel self-replicating loop endowed with universal construction properties. Based on the hardware implementation of the so-called Tom Thumb algorithm, the design of this loop leads to a new kind of cellular automaton made of a processing and a control units. The self-replication of the “LSL” acronym serves as an artificial cell division example of the loop and results in a new and straightforward methodology for the self-replication of computing machines of any dimensions.

MSC:

68Q80 Cellular automata (computational aspects)
37B15 Dynamical aspects of cellular automata
92B20 Neural networks for/in biological studies, artificial life and related topics
Full Text: DOI

References:

[1] Byl, J., Self-reproduction in small cellular automata, Physica D, 34, 295-299 (1989) · Zbl 0684.68070
[2] Chou, H.-H.; Reggia, J. A., Problem solving during artificial selection of self-replicating loops, Physica D, 115, 3-4, 293-312 (1998) · Zbl 0979.68556
[3] K.E. Drexler, Nanosystems: Molecular Machinery, Manufacturing, and Computation, Wiley, New York, 1992.; K.E. Drexler, Nanosystems: Molecular Machinery, Manufacturing, and Computation, Wiley, New York, 1992.
[4] R.A. Freitas Jr., R.C. Merkle, Kinematic Self-replicating Machines, Landes Bioscience, Georgetown, TX, in press.; R.A. Freitas Jr., R.C. Merkle, Kinematic Self-replicating Machines, Landes Bioscience, Georgetown, TX, in press.
[5] Imai, K.; Hori, T.; Morita, K., Self-reproduction in three-dimensional reversible cellular space, Artif. Life, 8, 2, 155-174 (2002)
[6] Langton, C. G., Self-reproduction in cellular automata, Physica D, 10, 135-144 (1984) · Zbl 0563.68048
[7] N.J. Macias, L.J.K. Durbeck, Self-assembling circuits with autonomous fault handling, in: A. Stoica, J. Lohn, R. Katz, D. Keymeulen, R.S. Zebulum (Eds.), Proceedings of the 2002 NASA/DOD Conference on Evolvable Hardware, Alexandria, VA, IEEE Computer Society, Los Alamitos, CA, 2002, pp. 46-55.; N.J. Macias, L.J.K. Durbeck, Self-assembling circuits with autonomous fault handling, in: A. Stoica, J. Lohn, R. Katz, D. Keymeulen, R.S. Zebulum (Eds.), Proceedings of the 2002 NASA/DOD Conference on Evolvable Hardware, Alexandria, VA, IEEE Computer Society, Los Alamitos, CA, 2002, pp. 46-55.
[8] Mange, D.; Sipper, M.; Stauffer, A.; Tempesti, G., Toward robust integrated circuits: the Embryonics approach, Proc. IEEE, 88, 4, 516-541 (2000)
[9] C.L. Nehaniv, Self-reproduction in asynchronous cellular automaton, in: A. Stoica, J. Lohn, R. Katz, D. Keymeulen, R.S. Zebulum (Eds.), Proceedings of the 2002 NASA/DOD Conference on Evolvable Hardware, Alexandria, VA, IEEE Computer Society, Los Alamitos, CA, 2002, pp. 201-209.; C.L. Nehaniv, Self-reproduction in asynchronous cellular automaton, in: A. Stoica, J. Lohn, R. Katz, D. Keymeulen, R.S. Zebulum (Eds.), Proceedings of the 2002 NASA/DOD Conference on Evolvable Hardware, Alexandria, VA, IEEE Computer Society, Los Alamitos, CA, 2002, pp. 201-209.
[10] Perrier, J.-Y.; Sipper, M.; Zahnd, J., Toward a viable, self-reproducing universal computer, Physica D, 97, 335-352 (1996) · Zbl 1194.68156
[11] Reggia, J. A.; Armentrout, S. L.; Chou, H.-H.; Peng, Y., Simple systems that exhibit self-directed replication, Science, 259, 1282-1287 (1993) · Zbl 1226.68046
[12] H.F. Restrepo, D. Mange, An Embryonics implementation of a self-replicating universal Turing machine, in: Y. Liu, K. Tanaka, M. Iwata, T. Higuchi, M. Yasunaga (Eds.), Evolvable Systems: From Biology to Hardware (ICES 2001), Lecture Notes in Computer Science, vol. 2210, Springer-Verlag, Berlin, 2001, pp. 74-87.; H.F. Restrepo, D. Mange, An Embryonics implementation of a self-replicating universal Turing machine, in: Y. Liu, K. Tanaka, M. Iwata, T. Higuchi, M. Yasunaga (Eds.), Evolvable Systems: From Biology to Hardware (ICES 2001), Lecture Notes in Computer Science, vol. 2210, Springer-Verlag, Berlin, 2001, pp. 74-87. · Zbl 1042.68603
[13] M.C. Roco, W.S. Bainbridge (Eds.), Converging Technologies for Improving Human Performance. Nanotechnology, Biotechnology, Information Technology and Cognitive Science, NSF/DOC Sponsored Report, Arlington, VA, 2002.; M.C. Roco, W.S. Bainbridge (Eds.), Converging Technologies for Improving Human Performance. Nanotechnology, Biotechnology, Information Technology and Cognitive Science, NSF/DOC Sponsored Report, Arlington, VA, 2002.
[14] A. Stauffer, D. Mange, G. Tempesti, C. Teuscher, Biowatch: a giant electronic bio-inspired watch, in: D. Keymeulen, A. Stoica, J. Lohn, R.S. Zebulum (Eds.), Proceedings of the Third NASA/DOD Conference on Evolvable Hardware, Long Beach, IEEE Computer Society, Los Alamitos, CA, 2001, pp. 185-192.; A. Stauffer, D. Mange, G. Tempesti, C. Teuscher, Biowatch: a giant electronic bio-inspired watch, in: D. Keymeulen, A. Stoica, J. Lohn, R.S. Zebulum (Eds.), Proceedings of the Third NASA/DOD Conference on Evolvable Hardware, Long Beach, IEEE Computer Society, Los Alamitos, CA, 2001, pp. 185-192. · Zbl 1042.68805
[15] A. Stauffer, M. Sipper, Data and signals: a new kind of cellular automaton for growing systems, in: J. Lohn, R. Zebulum, J. Steincamp, D. Keymeulen, A. Stoica, M.I. Ferguson (Eds.), Proceedings of the 2003 NASA/DOD Conference on Evolvable Hardware, Chicago, IL, IEEE Computer Society, Los Alamitos, CA, 2003, pp. 235-241.; A. Stauffer, M. Sipper, Data and signals: a new kind of cellular automaton for growing systems, in: J. Lohn, R. Zebulum, J. Steincamp, D. Keymeulen, A. Stoica, M.I. Ferguson (Eds.), Proceedings of the 2003 NASA/DOD Conference on Evolvable Hardware, Chicago, IL, IEEE Computer Society, Los Alamitos, CA, 2003, pp. 235-241.
[16] G. Tempesti, A new self-reproducing cellular automaton capable of construction and computation, in: F. Morán, A. Moreno, J.J. Merelo, P. Chacón (Eds.), Proceedings of the Third European Conference on Artificial Life (ECAL’95), Lecture Notes in Computer Science, vol. 929, Springer-Verlag, Heidelberg, 1995, pp. 555-563.; G. Tempesti, A new self-reproducing cellular automaton capable of construction and computation, in: F. Morán, A. Moreno, J.J. Merelo, P. Chacón (Eds.), Proceedings of the Third European Conference on Artificial Life (ECAL’95), Lecture Notes in Computer Science, vol. 929, Springer-Verlag, Heidelberg, 1995, pp. 555-563. · Zbl 1154.68309
[17] G. Tempesti, D. Mange, A. Stauffer, C. Teuscher, The BioWall: an electronic tissue for prototyping bio-inspired systems, in: A. Stoica, J. Lohn, R. Katz, D. Keymeulen, R.S. Zebulum (Eds.), Proceedings of the 2002 NASA/DOD Conference on Evolvable Hardware, Alexandria, VA, IEEE Computer Society, Los Alamitos, CA, 2002, pp. 221-230.; G. Tempesti, D. Mange, A. Stauffer, C. Teuscher, The BioWall: an electronic tissue for prototyping bio-inspired systems, in: A. Stoica, J. Lohn, R. Katz, D. Keymeulen, R.S. Zebulum (Eds.), Proceedings of the 2002 NASA/DOD Conference on Evolvable Hardware, Alexandria, VA, IEEE Computer Society, Los Alamitos, CA, 2002, pp. 221-230.
[18] J. von Neumann, in: A.W. Burks (Ed.), Theory of Self-reproducing Automata, University of Illinois Press, Illinois, 1966.; J. von Neumann, in: A.W. Burks (Ed.), Theory of Self-reproducing Automata, University of Illinois Press, Illinois, 1966.
[19] Watson, J. D.; Crick, F. H.C., A structure for deoxyribose nucleic acid, Nature, 171, 737-738 (1953)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.