×

Parallel hierarchical multiscale modelling of hydro-mechanical problems for saturated granular soils. (English) Zbl 1425.74318

Summary: This paper extends the hierarchical multiscale approach developed earlier by the authors to model the coupled hydro-mechanical behaviour for saturated granular soils. Based on a hierarchical coupling of the finite element method (FEM) and the discrete element method (DEM), the approach employs the FEM to solve a boundary value problem while using the DEM to derive the required nonlinear material responses at each FEM Gauss integration point. It helps to bypass the phenomenological constitutive model required in the conventional FEM simulations and offers a natural pathway for scale bridging. The current extension features further key consideration of the coupled hydro-mechanical behaviour in a saturated granular soil due to the presence of pore fluid and its flow. By invoking Terzaghi’s effective stress principle, a \(\mathbf{u}-p\) formulation is proposed for the multiscale framework to derive the effective stress from DEM solution of the representative volume element (RVE) embedded at each Gauss point which is then superimposed with the pore fluid pressure to obtain the total stress in solving the coupled governing equations for a fluid-solid mixture. This extension greatly enriches the predictive capacity of the multiscale approach for simulating saturated granular soils relevant to a wide variety of important civil/mining applications. The new approach is first benchmarked by closed-form solutions to classical 1D and 2D consolidation problems. It is then applied to simulate globally undrained biaxial compression tests on both dense and loose soils subjected to large deformation. We further discuss interesting fluid flow patterns and the failure modes (both localisation and diffuse liquefaction) observed from the simulations and provide detailed cross-scale analyses.

MSC:

74L10 Soil and rock mechanics
74S05 Finite element methods applied to problems in solid mechanics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs

Software:

escript; mpi4py; Gmsh
Full Text: DOI

References:

[1] Zienkiewicz, O. C.; Chan, A. H.C.; Pastor, M.; Schrefler, B. A.; Shiomi, T., Computational Geomechanics with Special Reference to Earthquake Engineering (1999), John Wiley & Sons: John Wiley & Sons Chichester, UK · Zbl 0932.74003
[2] Zhao, J.; Shan, T., Coupled CFD-DEM simulation of fluid-particle interaction in geomechanics, Powder Technol., 239, 248-258 (2013)
[3] Catalano, E.; Chareyre, B.; Barthélémy, E., Pore-scale modeling of fluid-particles interaction and emerging poromechanical effects, Int. J. Numer. Anal. Methods Geomech., 38, 51-71 (2014)
[4] Shan, T.; Zhao, J., A coupled CFD-DEM analysis of granular flow impacting on water reservoir, Acta Mech., 225, 2449-2470 (2014) · Zbl 1302.76197
[5] Feng, Y. T.; Han, K.; Owen, D. R.J., Combined three-dimensional lattice Boltzmann method and discrete element method for modelling fluid-particle interactions with experimental assessment, Internat. J. Numer. Methods Engrg., 81, 229-245 (2010) · Zbl 1183.76843
[6] Owen, D. R.J.; Leonardi, C. R.; Feng, Y. T., An efficient framework for fluid-structure interaction using the lattice Boltzmann method and immersed moving boundaries, Internat. J. Numer. Methods Engrg., 87, 66-95 (2011) · Zbl 1242.76276
[7] Han, Y.; Cundall, P. A., LBM-DEM modeling of fluid-solid interaction in porous media, Int. J. Numer. Anal. Methods Geomech., 37, 1391-1407 (2013)
[8] Hua, L., Stable element-free Galerkin solution procedures for the coupled soil-pore fluid problem, Internat. J. Numer. Methods Engrg., 86, 1000-1026 (2011) · Zbl 1235.74359
[9] Bui, H. H.; Fukagawa, R., An improved SPH method for saturated soils and its application to investigate the mechanisms of embankment failure: Case of hydrostatic pore-water pressure, Int. J. Numer. Anal. Methods Geomech., 37, 31-50 (2013)
[10] Xie, Y.; Wang, G., A stabilized iterative scheme for coupled hydro-mechanical systems using reproducing kernel particle method, Internat. J. Numer. Methods Engrg., 99, 819-843 (2014) · Zbl 1352.74490
[11] Bandara, S.; Soga, K., Coupling of soil deformation and pore fluid flow using material point method, Comput. Geotech., 63, 199-214 (2015)
[12] Biot, M. A., General theory of three-dimensional consolidation, J. Appl. Phys., 12, 2, 155-164 (1941) · JFM 67.0837.01
[14] Guo, N.; Zhao, J., A coupled FEM/DEM approach for hierarchical multiscale modelling of granular media, Internat. J. Numer. Methods Engrg., 99, 11, 789-818 (2014) · Zbl 1352.74359
[15] Guo, N., Multiscale characterization of the shear behavior of granular media (2014), The Hong Kong University of Science and Technology: The Hong Kong University of Science and Technology Hong Kong, (Ph.D. thesis)
[16] Zhao, J.; Guo, N., The interplay between anisotropy and strain localisation in granular soils: a multiscale insight, Géotechnique, 65, 8, 642-656 (2015)
[17] Guo, N.; Zhao, J., Multiscale insights into classical geomechanics problems, Int. J. Numer. Anal. Methods Geomech., 40, 3, 367-390 (2016)
[18] Kaneko, K.; Terada, K.; Kyoya, T.; Kishino, Y., Global-local analysis of granular media in quasi-static equilibrium, Int. J. Solids Struct., 40, 4043-4069 (2003) · Zbl 1038.74530
[19] Miehe, C.; Dettmar, J.; Zäh, D., Homogenization and two-scale simulations of granular materials for different microstructural constraints, Internat. J. Numer. Methods Engrg., 83, 1206-1236 (2010) · Zbl 1197.74084
[20] Andrade, J.; Avila, C.; Hall, S.; Lenoir, N.; Viggiani, G., Multiscale modeling and characterization of granular matter: from grain kinematics to continuum mechanics, J. Mech. Phys. Solids, 59, 237-250 (2011) · Zbl 1270.74049
[21] Nguyen, T. K.; Combe, G.; Caillerie, D.; Desrues, J., FEM×DEM modelling of cohesive granular materials: numerical homogenisation and multi-scale simulations, Acta Geophys., 62, 1109-1126 (2014)
[22] Li, X.; Liang, Y.; Duan, Q.; Schrefler, B. A.; Du, Y., A mixed finite element procedure of gradient Cosserat continuum for second-order computational homogenisation of granular materials, Comput. Mech., 54, 1331-1356 (2014) · Zbl 1311.74125
[23] Liu, Y.; Sun, W.; Yuan, Z.; Fish, J., A nonlocal multiscale discrete-continuum model for predicting mechanical behavior of granular materials, Internat. J. Numer. Methods Engrg., 106, 2, 129-160 (2016) · Zbl 1352.74082
[24] Terzaghi, K., Principles of soil mechanics, Eng. News-Record, 95, 19-27 (1925)
[25] White, J. A.; Borja, R. I., Stabilized low-order finite elements for coupled solid-deformation/fluid-diffusion and their application to fault zone transients, Comput. Methods Appl. Mech. Engrg., 197, 4353-4366 (2008) · Zbl 1194.74480
[26] Sun, W.; Ostien, J. T.; Salinger, A. G., A stabilized assumed deformation gradient finite element formulation for strongly coupled poromechanical simulations at finite strain, Int. J. Numer. Anal. Methods Geomech., 37, 2755-2788 (2013)
[27] Song, X.; Borja, R. I., Mathematical framework for unsaturated flow in the finite deformation range, Internat. J. Numer. Methods Engrg., 97, 658-682 (2014) · Zbl 1352.76115
[28] Scholtès, L.; Hicher, P.-Y.; Nicot, F.; Chareyre, B.; Darve, F., On the capillary stress tensor in wet granular materials, Int. J. Numer. Anal. Methods Geomech., 33, 1289-1313 (2009) · Zbl 1273.74058
[29] Pao, W. K.S.; Lewis, R. W.; Masters, I., A fully coupled hydro-thermo-poro-mechanical model for black oil reservoir simulation, Int. J. Numer. Anal. Methods Geomech., 25, 1229-1256 (2001) · Zbl 1016.74023
[30] Ferronato, M.; Castelletto, N.; Gambolati, G., A fully coupled 3-D mixed finite element model of Biot consolidation, J. Comput. Phys., 229, 4813-4830 (2010) · Zbl 1305.76055
[31] Kim, J.; Tchelepi, H. A.; Juanes, R., Stability and convergence of sequential methods for coupled flow and geomechanics: Fixed-stress and fixed-strain splits, Comput. Methods Appl. Mech. Engrg., 200, 1591-1606 (2011) · Zbl 1228.74101
[32] Kim, J.; Tchelepi, H. A.; Juanes, R., Stability and convergence of sequential methods for coupled flow and geomechanics: Drained and undrained splits, Comput. Methods Appl. Mech. Engrg., 200, 2094-2116 (2011) · Zbl 1228.74106
[33] Kim, J.; Tchelepi, H. A.; Juanes, R., Stability, accuracy, and efficiency of sequential methods for coupled flow and geomechanics, SPE J., 16, 2, 249-262 (2011) · Zbl 1228.74106
[34] Carman, P. C., Fluid flow through granular beds, Trans. Inst. Chem. Eng., 15, 150-166 (1937)
[35] Andrade, J. E.; Borja, R. I., Modeling deformation banding in dense and loose fluid-saturated sands, Finite Elem. Anal. Des., 43, 361-383 (2007)
[36] Gross, L.; Bourgouin, L.; Hale, A. J.; Mühlhaus, H.-B., Interface modeling in incompressible media using level sets in escript, Phys. Earth Planet. Inter., 163, 23-34 (2007)
[37] Brezzi, F.; Bathe, K.-J., A discourse on the stability conditions for mixed finite element formulations, Comput. Methods Appl. Mech. Engrg., 82, 1-3, 27-57 (1990) · Zbl 0736.73062
[38] Wren, J. R.; Borja, R. I., Micromechanics of granular media Part II: Overall tangential moduli and localization model for periodic assemblies of circular disks, Comput. Methods Appl. Mech. Engrg., 141, 221-246 (1997) · Zbl 0905.73061
[39] Kruyt, N.; Rothenburg, L., Statistical theories for the elastic moduli of two-dimensional assemblies of granular materials, Internat. J. Engrg. Sci., 36, 1127-1142 (1998)
[40] Šmilauer, V., Using and programming, (Yade Documentation (2015)), The Yade Project
[41] Asadi, R.; Ataie-Ashtiani, B.; Simmons, C. T., Finite volume coupling strategies for the solution of a Biot consolidation model, Comput. Geotech., 55, 494-505 (2014)
[42] Dalcín, L.; Paz, R.; Storti, M.; D’Elía, J., MPI for Python: Performance improvements and MPI-2 extensions, J. Parallel Distrib. Comput., 68, 655-662 (2008)
[43] Oka, F.; Higo, Y.; Kimoto, S., Effect of dilatancy on the strain localization of water-saturated elasto-viscoplastic soil, Int. J. Solids Struct., 39, 3625-3647 (2002) · Zbl 1087.74602
[44] Higo, Y.; Oka, F.; Jiang, M.; Fujita, Y., Effects of transport of pore water and material heterogeneity on strain localization of fluid-saturated gradient-dependent viscoplastic geomaterial, Int. J. Numer. Anal. Methods Geomech., 29, 495-523 (2005) · Zbl 1122.74381
[45] Verruijt, A.; van Baars, S., Soil Mechanics (2007), VSSD: VSSD Delft, Netherlands
[46] Geuzaine, C.; Remacle, J.-F., Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities, Internat. J. Numer. Methods Engrg., 79, 1309-1331 (2009) · Zbl 1176.74181
[47] Gibson, R. E.; Schiffman, R. L.; Pu, S. L., Plane strain and axially symmetric consolidation of a clay layer on a smooth impervious base, Quart. J. Mech. Appl. Math., 23, 505-520 (1970) · Zbl 0217.23705
[48] Mandel, J., Consolidation des sols (étude mathématique), Géotechnique, 3, 7, 287-299 (1953)
[49] Cryer, C. W., A comparison of the three-dimensional consolidation theories of Biot and Terzaghi, Quart. J. Mech. Appl. Math., 16, 4, 401-412 (1963) · Zbl 0121.21502
[50] Collin, F.; Chambon, R.; Charlier, R., A finite element method for poro mechanical modelling of geotechnical problems using local second gradient models, Internat. J. Numer. Methods Engrg., 65, 1749-1772 (2006) · Zbl 1111.74040
[51] Sieffert, Y.; Buzzi, O.; Collin, F., Numerical study of shear band instability and effect of cavitation on the response of a specimen under undrained biaxial loading, Int. J. Solids Struct., 51, 1686-1696 (2014)
[52] McManus, K. J.; Davis, R. O., Dilation-induced pore fluid cavitation in sands, Géotechnique, 47, 1, 173-177 (1997)
[53] Yoshimine, M.; Robertson, P. K.; Wride, C. E., Undrained shear strength of clean sands to trigger flow liquefaction: Reply, Can. Geotech. J., 38, 3, 654-657 (2001)
[54] Liu, X.; Scarpas, A.; Blaauwendraad, J., Numerical modelling of nonlinear response of soil. part 2: Strain localization investigation on sand, Int. J. Solids Struct., 42, 1883-1907 (2005) · Zbl 1093.74538
[55] Servant, G.; Darve, F.; Desrues, J.; Georgopoulos, I. O., Diffuse modes of failure in geomaterials, (DiBenedetto, H.; Doanh, T.; Geoffroy, H.; Sauzéat, C., Deformation Characteristics of Geomaterials: Recent Investigations and Prospects (2005), Taylor & Francis Group: Taylor & Francis Group London), 181-200
[56] Khoa, H. D.V.; Georgopoulos, I. O.; Darve, F.; Laouafa, F., Diffuse failure in geomaterials: Experiments and modelling, Comput. Geotech., 33, 1-14 (2006)
[57] Satake, M., Fabric tensor in granular materials, (IUTAM Symposium on Deformation and Failure of Granular Materials (1982), A.A. Balkema: A.A. Balkema Delft), 63-68
[58] Mehta, A., Granular Physics (2007), Cambridge University Press: Cambridge University Press Cambridge, UK · Zbl 1136.74001
[59] Sun, W.; Andrade, J. E.; Rudnicki, J. W.; Eichhubl, P., Connecting microstructural attributes and permeability from 3D tomographic image of in situ shear-enhanced compaction bands using multiscale computations, Geophys. Res. Lett., 38, 10, L10302 (2011)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.