×

Homogenization and multiscaling of granular media for different microscopic constraints. (English) Zbl 1323.74068

de Borst, René (ed.) et al., Multiscale methods in computational mechanics. Progress and accomplishments. Selected papers based on the presentations at the international colloquium (MMCM 2009), Rolduc, The Netherlands, March 11–13, 2009. New York, NY: Springer (ISBN 978-90-481-9808-5/hbk; 978-94-007-3386-2/pbk; 978-90-481-9809-2/ebook). Lecture Notes in Applied and Computational Mechanics 55, 155-177 (2011).
Summary: We outline a method for quasi-static homogenization of granular microstructures and its embedding into two-scale simulations. A consistent extension of classical stiff, soft and periodic boundary conditions from continuous to granular microstructures induces new classes of micro-to-macro transitions for granular aggregates. These boundary conditions include constraints not only for particle center displacements but also for particle rotations at a driving boundary frame. The stiff and soft constraints at the driving frame of the particle aggregate induce upper and lower bounds of the particle aggregate stiffness. We outline a unified implementation of the displacement- and rotational constraints by penalty methods that proves to be convenient for straightforward integration into discrete element codes. Finally, we embed granular microstructures into a coarse graining discrete-to-finite element model, where they govern the micromechanical behavior of a two-scale simulation.
For the entire collection see [Zbl 1202.74012].

MSC:

74Q10 Homogenization and oscillations in dynamical problems of solid mechanics
74E20 Granularity
74S05 Finite element methods applied to problems in solid mechanics
74S30 Other numerical methods in solid mechanics (MSC2010)
Full Text: DOI

References:

[1] Bardet, J. P.; Proubet, J., Adaptative dynamic relaxation for statics of granular materials, Computers and Structures, 39, 221-229 (1991) · doi:10.1016/0045-7949(91)90020-M
[2] Bardet, J. P.; Vardoulakis, I., The asymmetry of stress in granular media, International Journal of Solids and Structures, 38, 353-367 (2001) · Zbl 0998.74021 · doi:10.1016/S0020-7683(00)00021-4
[3] Borja, R. I.; Wren, J. R., Micromechanics of granular media Part I: Generation of overall constitutive equation for assemblies of circular disks, Computer Methods in Applied Mechanics and Engineering, 127, 13-36 (1995) · Zbl 0861.73063 · doi:10.1016/0045-7825(95)00846-2
[4] Chang, C. S.; Liao, C. L., Constitutive relation for a particulate medium with the effect of particle rotation, International Journal of Solids and Structures, 26, 4, 437-453 (1990) · Zbl 0706.73002 · doi:10.1016/0020-7683(90)90067-6
[5] Chang, C. S.; Ma, L., A micromechanical-based micropolar theory for deformation of granular solids, International Journal of Solids and Structures, 28, 1, 67-86 (1991) · Zbl 0749.73002 · doi:10.1016/0020-7683(91)90048-K
[6] Cundall, P. A.; Strack, O. D.L., A discrete numerical model for granular assemblies, Géotechnique, 29, 1, 47-65 (1979) · doi:10.1680/geot.1979.29.1.47
[7] Desrues, J.; Viggiani, G., Strain localization in sand: an overview of the experimental results obtained in grenoble using stereophotogrammetry, International Journal for Numerical and Analytical Methods in Geomechanics, 28, 279-321 (2004) · doi:10.1002/nag.338
[8] Ehlers, W.; Ramm, E.; Diebels, S.; Addetta, G. A.D, From particle ensembles to cosserat continua: homogenization of contact forces towards stresses and couple stresses, International Journal of Solids and Structures, 40, 6681-6702 (2003) · Zbl 1053.74002 · doi:10.1016/S0020-7683(03)00418-9
[9] Herrmann, H. J.; Luding, S., Modeling granular media on the computer, Continuum Mechanics and Thermodynamics, 10, 189-231 (1998) · Zbl 0947.74009 · doi:10.1007/s001610050089
[10] Kanatani, K., A micropolar continuum theory for the flow of granular materials, International Journal of Engineering Science, 17, 419-432 (1979) · Zbl 0399.73010 · doi:10.1016/0020-7225(79)90078-8
[11] Kaneko, K.; Terada, K.; Kyoya, T.; Kishino, Y., Global-local analysis of granular media in quasi-static equilibrium, International Journal of Solids and Structures, 40, 4043-4069 (2003) · Zbl 1038.74530 · doi:10.1016/S0020-7683(03)00209-9
[12] Luding, S., Micro-macro transition for anisotropic, frictional granular packings, International Journal of Solids and Structures, 41, 5821-5836 (2004) · Zbl 1112.74364 · doi:10.1016/j.ijsolstr.2004.05.048
[13] Meier, H. A.; Steinmann, P.; Kuhl, E., Towards multiscale computation of confined granular media - Contact forces, stresses and tangent operators, Technische Mechanik, 28, 1, 32-42 (2008)
[14] Miehe, C., Computational micro-to-macro transitions for discretized micro-structures of heterogeneous materials at large strains based on the minimization of averaged incremental energy, Computer Methods in Applied Mechanics and Engineering, 192, 559-591 (2002) · Zbl 1091.74530 · doi:10.1016/S0045-7825(02)00564-9
[15] Miehe, C.; Bayreuther, C., On multiscale fe analyses of heterogeneous structures: From homogenization to multigrid solvers, International Journal for Numerical Methods in Engineering, 71, 1135-1180 (2007) · Zbl 1194.74443 · doi:10.1002/nme.1972
[16] Miehe, C.; Dettmar, J., A framework for micro-macro transitions in periodic particle aggregates of granular materials, Computer Methods in Applied Mechanics and Engineering, 193, 225-256 (2004) · Zbl 1075.76541 · doi:10.1016/j.cma.2003.10.004
[17] C. Miehe, J. Dettmar, and D. Zäh. Homogenization and two-scale simulations of granular materials for different microstructural constraints. International Journal of Numerical Methods in Engineering, submitted, 2009. · Zbl 1197.74084
[18] Miehe, C.; Schröder, J.; Schotte, J., Computational homogenization analysis in finite plasticity. simulation of texture development in polycrystalline materials, Computer Methods in Applied Mechanics and Engineering, 171, 387-418 (1999) · Zbl 0982.74068 · doi:10.1016/S0045-7825(98)00218-7
[19] Moreau, J. J., Some numerical methods in multibody dynamics: Application to granular materials, European Journal of Mechanics A/Solids, 13, 4, 93-114 (1994) · Zbl 0815.73009
[20] Mühlhaus, H.-B.; Vardoulakis, I., The thickness of shear bands in granular materials, Géotechnique, 37, 3, 271-283 (1987) · doi:10.1680/geot.1987.37.3.271
[21] P. Underwood. Dynamic relaxation. In T. Belytschko and T.J.R. Hughes (Eds.), Computational Methods for Transient Analysis. Elsevier Science Publisher, pp. 245-265, 1983. · Zbl 0537.73055
[22] Vardoulakis, I.; Goldscheider, M., Biaxialgerät zur Untersuchung der Festigkeit und Dilatanz von Scherfugen in Böden (A biaxial apparatus for testing of strength and dilatancy of shear bands in solids), Geotechnik, 3, 19-31 (1980)
[23] Wren, J. R.; Borja, R. I., Micromechanics of granular media Part II: Overall tangential moduli and localization model for periodic assemblies of circular disks, Computer Methods in Applied Mechanics and Engineering, 141, 221-246 (1997) · Zbl 0905.73061 · doi:10.1016/S0045-7825(96)01110-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.