×

A mixed finite element procedure of gradient Cosserat continuum for second-order computational homogenisation of granular materials. (English) Zbl 1311.74125

Summary: A mixed finite element (FE) procedure of the gradient Cosserat continuum for the second-order computational homogenisation of granular materials is presented. The proposed mixed FE is developed based on the Hu-Washizu variational principle. Translational displacements, microrotations, and displacement gradients with Lagrange multipliers are taken as the independent nodal variables. The tangent stiffness matrix of the mixed FE is formulated. The advantage of the gradient Cosserat continuum model in capturing the meso-structural size effect is numerically demonstrated. Patch tests are specially designed and performed to validate the mixed FE formulations. A numerical example is presented to demonstrate the performance of the mixed FE procedure in the simulation of strain softening and localisation phenomena, while without the need to specify the macroscopic phenomenological constitutive relationship and material failure model. The meso-structural mechanisms of the macroscopic failure of granular materials are detected, i.e. significant development of dissipative sliding and rolling frictions among particles in contacts, resulting in the loss of contacts.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74E20 Granularity
74Q05 Homogenization in equilibrium problems of solid mechanics
Full Text: DOI

References:

[1] Pasternak E, Muhlhaus HB (2005) Generalised homogenisation procedures for granular materials. J Eng Math 52:199-229 · Zbl 1176.74056 · doi:10.1007/s10665-004-3950-z
[2] Chang CS, Kuhn MR (2005) On virtual work and stress in granular media. Int J Solids Struct 42:3773-3793 · Zbl 1119.74341 · doi:10.1016/j.ijsolstr.2004.11.011
[3] Ehlers W, Ramm E, Diebels S, d’Addetta G (2003) From particle ensembles to Cosserat continua: homogenization of contact forces towards stresses and couple stresses. Int J Solids Struct 40:6681-6702 · Zbl 1053.74002 · doi:10.1016/S0020-7683(03)00418-9
[4] d’Addetta G, Ramm E, Diebels S, Ehlers W (2004) A particle center based homogenization strategy for granular assemblies. Eng Comput 21:360-383 · Zbl 1062.74595 · doi:10.1108/02644400410519839
[5] d’Addetta G, Ramm E, Diebels S, Ehlers W (2004) Static equations of the Cosserat continuum derived from intra-granular stresses. Granular Matter 13:189-196
[6] Mühlhaus H-B, Oka F (1996) Dispersion and wave propagation in discrete and continuous models for granular materials. Int J Solids Struct 33:2841-2858 · Zbl 0926.74052 · doi:10.1016/0020-7683(95)00178-6
[7] Hicher PY, Chang CS (2005) Evaluation of two homogenization techniques for modeling the elastic behaviors of granular matrials. J Eng Mech 131:1184-1194 · doi:10.1061/(ASCE)0733-9399(2005)131:11(1184)
[8] Nemat-Nasser S, Hori M (1999) Micromechanics: overall properties of heterogeneous materials. Elsevier, Amsterdam · Zbl 0924.73006
[9] Chang CS, Ma L (1992) Elastic material constants for isotropic granular solids with particle rotation. Int J Solids Struct 29:1001-1018 · Zbl 0760.73003
[10] Suiker ASJ, de Borst R (2005) Enhanced continua and discrete lattices for modelling granular assemblies. Proc R Soc A 363:2543-2580 · Zbl 1152.74307
[11] Bigoni D, Drugan WJ (2007) Analytical derivation of Cosserat moduli via homogenization of heterogeneous elastic materials. J Appl Mech 74:741-753 · doi:10.1115/1.2711225
[12] Sab K, Pradel F (2009) Homogenisation of periodic Cosserat media. Int J Comput Appl Technol 34:60-71 · doi:10.1504/IJCAT.2009.022703
[13] Jenkins JT, Koenders MA (2004) The incremental response of random aggregates of identical round particles. Eur Phys J E 13:113-123 · doi:10.1140/epje/e2004-00048-9
[14] La Ragione L, Jenkins JT (2007) The initial response of an idealized granular material. Proc R Soc A 463:735-758 · Zbl 1347.74022 · doi:10.1098/rspa.2006.1792
[15] Gardiner BS, Tordesillas A (2005) Micromechanical constitutive modeling of granular media: evolution and loss of contact in particle clusters. J Eng Mech 52:93-106 · Zbl 1080.74016
[16] Papanicolopulos SA, Veveakis E (2011) Sliding and rolling dissipation in Cosserat plasticity. Granular Matter 13:197-204 · doi:10.1007/s10035-011-0253-8
[17] Luscher DJ, McDowell DL, Bronkhorst CA (2010) A second gradient theoretical framework for hierarchical multiscale modeling of materials. Int J Plasticity 26:1248-1275 · Zbl 1436.74005 · doi:10.1016/j.ijplas.2010.05.006
[18] Forest S, Pradel F, Sab K (2001) Asymptotic analysis of heterogeneous Cosserat media. Int J Solids Struct 38:4585-4608 · Zbl 1033.74038 · doi:10.1016/S0020-7683(00)00295-X
[19] Kouznetsova V, Brekelmans W, Baaijens F (2001) An approach to micro-macro modeling of heterogeneous materials. Comput Mech 27:37-48 · Zbl 1005.74018 · doi:10.1007/s004660000212
[20] Wagner GJ, Liu WK (2003) Coupling of atomistic and continuum simulations using a bridging scale decomposition. J Comput Phys 190:249-274 · Zbl 1169.74635 · doi:10.1016/S0021-9991(03)00273-0
[21] Li XK, Wan K (2001) A bridging scale method for granular materials with discrete particle assembly-Cosserat continuum modeling. Comput Geotech 38:1052-1068 · doi:10.1016/j.compgeo.2011.07.001
[22] Wellmann C, Wriggers P (2012) A two scale model of granular materials. Comput Methods Appl Mech Eng 205-208:46-58 · Zbl 1239.74083 · doi:10.1016/j.cma.2010.12.023
[23] Vernerey F, Liu WK, Moran B (2007) Multi-scale micromorphic theory for hierarchical materials. J Mech Phys Solids 55:2603-2651 · Zbl 1159.74314 · doi:10.1016/j.jmps.2007.04.008
[24] Terada K, Kikuchi N (2001) A class of general algorithms for multi-scale analyses of heterogeneous media. Comput Methods Appl Mech Eng 190:5427-5464 · Zbl 1001.74095 · doi:10.1016/S0045-7825(01)00179-7
[25] Kaneko K, Terada K, Kyoya T, Kishino Y (2003) Global-local analysis of granular media in quasi-static equilibrium. Int J Solids Struct 40:4043-4069 · Zbl 1038.74530 · doi:10.1016/S0020-7683(03)00209-9
[26] Li XK, Liu QP, Zhang JB (2010) A micro-macro homogenization approach for discrete particle assembly-Cosserat continuum modeling of granular materials. Int J Solids Struct 47:291-303 · Zbl 1183.74042 · doi:10.1016/j.ijsolstr.2009.09.033
[27] Geers MGD, Kouznetsova VG, Brekelmans WAM (2010) Multi-scale computational homogenization: trends and challenges. J Comput Appl Math 234:2175-2182 · Zbl 1402.74107 · doi:10.1016/j.cam.2009.08.077
[28] Kouznetsova V, Geers MGD, Brekelmans WAM (2002) Multi-scale constitutive modelling of heterogeneous materials with a gradient-enhanced computational homogenization scheme. Int J Numer Methods Eng 54:1235-1260 · Zbl 1058.74070 · doi:10.1002/nme.541
[29] Kouznetsova V, Geers MGD, Brekelmans WAM (2004) Multi-scale second-order computational homogenization of multi-phase materials: a nested finite element solution strategy. Comput Methods Appl Mech Eng 193:5525-5550 · Zbl 1112.74469 · doi:10.1016/j.cma.2003.12.073
[30] Zhang HW, Galvanetto U, Schrefler BA (1999) Local analysis and global nonlinear behaviour of periodic assemblies of bodies in elastic contact. Comput Mech 24:217-229 · Zbl 0967.74047 · doi:10.1007/s004660050510
[31] Zhang HW, Schrefler BA (2000) Global constitutive behaviour of periodic assemblies of inelastic bodies in contact. Mech Compos Mater Struct 7:355-382 · doi:10.1080/10759410050201708
[32] Li XK, Zhang JB, Zhang X (2011) Micro-macro homogenization of gradient-enhanced Cosserat media. Eur J Mech A 30:362-372 · Zbl 1278.74141 · doi:10.1016/j.euromechsol.2010.10.008
[33] Larsson R, Diebels S (2007) A second-order homogenization procedure for multi-scale analysis based on micropolar kinematics. Int J Numer Methods Eng 69:2485-2512 · Zbl 1194.74282 · doi:10.1002/nme.1854
[34] Burst H, Forest S, Sab K (1998) Cosserat overall modeling of heterogeneous materials. Mech Res Commun 25:449-454 · Zbl 0949.74054 · doi:10.1016/S0093-6413(98)00059-7
[35] Kaczmarczyk Ł, Pearce CJ, Bićanić N (2008) Scale transition and enforcement of RVE boundary conditions in second-order computational homogenization. Int J Numer Methods Eng 74:506-522 · Zbl 1159.74403 · doi:10.1002/nme.2188
[36] Kaczmarczyk Ł, Pearce CJ, Bićanić N (2010) Studies of microstructural size effect and higher-order deformation in second-order computational homogenization. Comput Struct 88:1383-1390 · doi:10.1016/j.compstruc.2008.08.004
[37] Li XK, Du YY, Duan QL (2013) Micromechanically informed constitutive model and anisotropic damage characterization of Cosserat continuum for granular materials. Int J Damage Mech 22:643-682 · doi:10.1177/1056789512462427
[38] Kruyt NP (2003) Statics and kinematics of discrete Cosserat-type granular materials. Int J Solids Struct 40:511-534 · Zbl 1087.74516 · doi:10.1016/S0020-7683(02)00624-8
[39] Zhang HW, Wang H, Wriggers P, Schrefler BA (2005) Some investigations on finite element method for contact analysis of multiple Cosserat bodies. Comput Mech 36:444-458 · Zbl 1100.74059 · doi:10.1007/s00466-005-0680-7
[40] Hill R (1963) Elastic properties of reinforced solids: some theoretical principles. J Mech Phys Solids 11:357-372 · Zbl 0114.15804 · doi:10.1016/0022-5096(63)90036-X
[41] Li XK, Zhang X, Zhang JB (2010) A generalized Hill’s lemma and micromechanically based macroscopic constitutive model for heterogeneous granular materials. Comput Methods Appl Mech Eng 199:3137-3152 · Zbl 1225.74026 · doi:10.1016/j.cma.2010.06.016
[42] Zhang HW, Schrefler BA (2000) Gradient dependent plasticity model and dynamic strain localisation analysis of saturated and partially saturated porous media: one dimensional model. Eur J Mech A 19:503-524 · Zbl 0976.74016 · doi:10.1016/S0997-7538(00)00177-7
[43] Zhang HW, Schrefler BA (2001) Uniqueness and localisation analysis of elastic-plastic saturated porous media. Int J Numer Anal Methods Geomech 25:29-48 · Zbl 0996.74029 · doi:10.1002/1096-9853(200101)25:1<29::AID-NAG116>3.0.CO;2-S
[44] Zienkiewicz OC, Taylor RL (2000) The finite element method: solid mechanics. Butterworth-Heinemann, Oxford · Zbl 0991.74003
[45] Zervos A, Papanastasiou P, Vardoulakis I (2001) A finite element displacement formulation for gradient elastoplasticity. Int J Numer Methods Eng 50:1369-1388 · Zbl 1047.74073 · doi:10.1002/1097-0207(20010228)50:6<1369::AID-NME72>3.0.CO;2-K
[46] Xia ZC, Hutchinson JW (1996) Crack tip fields in strain gradient plasticity. J Mech Phys Solids 44:1621-1648 · doi:10.1016/0022-5096(96)00035-X
[47] Shu JY, Fleck NA (1998) The prediction of a size effect in microindentation. Int J Solids Struct 35:1363-1383 · Zbl 0923.73056 · doi:10.1016/S0020-7683(97)00112-1
[48] Shu JY, King WE, Fleck NA (1999) Finite elements for materials with strain gradient effects. Int J Numer Methods Eng 44:373-391 · Zbl 0943.74072 · doi:10.1002/(SICI)1097-0207(19990130)44:3<373::AID-NME508>3.0.CO;2-7
[49] Matsushima Chambon TR, Caillerie D (2002) Large strain finite element analysis of a local second gradient model: application to localization. Int J Numer Methods Eng 54:499-521 · Zbl 1098.74705 · doi:10.1002/nme.433
[50] Zervos A (2008) Finite elements for elasticity with microstructure and gradient elasticity. Int J Numer Methods Eng 73:564-595 · Zbl 1166.74043 · doi:10.1002/nme.2093
[51] Askes H, Aifantis EC (2011) Gradient elasticity in statics and dynamics: an overview of formulations, length scale identification procedures, finite element implementations and new results. Int J Solids Struct 48:1962-1990 · doi:10.1016/j.ijsolstr.2011.03.006
[52] Onck PR (2002) Cosserat modeling of cellular solids. Comptes Rendus Mecanique 330:717-722 · Zbl 1177.74318 · doi:10.1016/S1631-0721(02)01529-2
[53] Fleck NA, Hutchinson J (1997) Strain gradient plasticity. Adv Appl Mech 33:295-361 · Zbl 0894.73031 · doi:10.1016/S0065-2156(08)70388-0
[54] Jetteur PH, Cescotto S (1991) Mixed finite element for the analysis of large inelastic strains. Int J Numer Methods Eng 31:229-239 · Zbl 0825.73786 · doi:10.1002/nme.1620310203
[55] Li XK, Cescotto S (1996) Finite element method for gradient plasticity at large strains. Int J Numer Methods Eng 39:619-633 · Zbl 0846.73064 · doi:10.1002/(SICI)1097-0207(19960229)39:4<619::AID-NME873>3.0.CO;2-1
[56] Crisfield MA, Moita GF (1996) A co-rotational formulation for 2-D continua including incompatible modes. Int J Numer Methods Eng 39:2619-2633 · Zbl 0883.73076 · doi:10.1002/(SICI)1097-0207(19960815)39:15<2619::AID-NME969>3.0.CO;2-N
[57] Li XK, Chu XH, Feng YT (2005) A discrete particle model and numerical modeling of the failure modes of granular materials. Eng Comput 22:894-920 · Zbl 1191.74055 · doi:10.1108/02644400510626479
[58] Providas E, Kattis M (2002) Finite element method in plane Cosserat elasticity. Comput Struct 80:2059-2069 · doi:10.1016/S0045-7949(02)00262-6
[59] De Borst R, Sluys LJ (1991) Localisation in a Cosserat continuum under static and dynamic loading conditions. Comput Methods Appl Mech Eng 90:805-827 · doi:10.1016/0045-7825(91)90185-9
[60] Li XK, Tang HX (2005) A consistent return mapping algorithm for pressure-dependent elastoplastic Cosserat continua and modelling of strain localisation. Comput Struct 83:1-10 · Zbl 0926.74052
[61] De Borst R, Sluys LJ, Muhlhaus HB, Pamin J (1993) Fundamental issues in finite element analyses of localisation of deformation. Eng Comput 10:99-121 · doi:10.1108/eb023897
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.