×

The truss-like discrete element method in fracture and damage mechanics. (English) Zbl 1284.74142

Summary: Purpose: The purpose of this paper is to further develop the truss-like discrete element method (DEM) in order to make it suitable to deal with damage and fracture problems.
Design/methodology/approach: Finite and boundary elements are the best developed methods in the field of numerical fracture and damage mechanics. However, these methods are based on a continuum approach, and thus, the modelling of crack nucleation and propagation could be sometimes a cumbersome task. Besides, discrete methods possess the natural ability to introduce discontinuities in a very direct and intuitive way by simply breaking the link between their discrete components. Within this context, the present work extends the capabilities of a truss-like DEM via the introduction of three novel features: a tri-linear elasto-plastic constitutive law; a methodology for crack discretization and the computation of stress intensity factors; and a methodology for the computation of the stress field components from the unixial discrete-element results.
Findings: Obtained results show the suitability and the performance of the proposed methodologies to solve static and dynamic crack problems (including crack propagation) in brittle and elasto-plastic materials. Computed results are in good agreement with experimental and numerical results reported in the bibliography.
Research limitations/implications: This paper demonstrates the versatility of the truss-like DEM to deal with damage mechanics problems. The approach used in this work can be extended to the implementation of time-dependent damage mechanisms. Besides, the capabilities of the discrete approach could be exploited by coupling the truss-like DEM to finite and boundary element methods. Coupling strategies would allow using the DEM to model the regions of the problem where crack nucleation and propagation occurs, while finite or boundary elements are used to model the undamaged regions.
Originality/value: The scope of the truss-like DEM has been extended. New procedures have been introduced to deal with elastoplastic-crack problems and to improve the post processing of the stress results.

MSC:

74S30 Other numerical methods in solid mechanics (MSC2010)
74R20 Anelastic fracture and damage
74K99 Thin bodies, structures
Full Text: DOI

References:

[1] Absi, E. (1971), ”Théorie des equivalences-determination de quelques eleménts types”,Proceedings of L’institut Technique Du Balument el des Travau Publics, No. 281, pp. 83-6.
[2] DOI: 10.1111/j.1460-2695.2009.01408.x · doi:10.1111/j.1460-2695.2009.01408.x
[3] DOI: 10.1002/nme.941 · Zbl 1032.74662 · doi:10.1002/nme.941
[4] DOI: 10.1016/S0013-7944(01)00010-8 · doi:10.1016/S0013-7944(01)00010-8
[5] DOI: 10.1016/j.ijsolstr.2004.07.025 · Zbl 1120.74344 · doi:10.1016/j.ijsolstr.2004.07.025
[6] DOI: 10.1016/S0013-7944(97)00011-8 · doi:10.1016/S0013-7944(97)00011-8
[7] DOI: 10.1016/S0734-743X(03)00002-2 · doi:10.1016/S0734-743X(03)00002-2
[8] Cundall, P.A. and Strack, O.D.L. (1979), ”A distinct element model for granular assemblies”,Geotechnique, Vol. 29 No. 47, p. 65.
[9] Dalguer, L.A., Irikura, K., Riera, J.D. and Chiu, H.C. (2001), ”The importance of the dynamic source effects on strong ground motion during the 1999 Chi-Chi, Taiwan, earthquake: brief interpretation of the damage distribution on buildings”,Bulletin of the Seismological Society of America, Vol. 91/5, pp. 1112-27. · doi:10.1785/0120000705
[10] DOI: 10.1002/nme.1620330309 · Zbl 0825.73906 · doi:10.1002/nme.1620330309
[11] DOI: 10.1016/S0020-7683(02)00472-9 · Zbl 1032.74703 · doi:10.1016/S0020-7683(02)00472-9
[12] Hrennikoff, A. (1941), ”Solution of problems of elasticity by the framework method”,Journal of Applied Mechanics, Vol. 12, pp. 169-75. · Zbl 0061.42112
[13] Huespe, A.E., Oliver, J., Sanchez, P.J., Blanco, S. and Sonzogni, V. (2006), ”Strong discontinuity approach in dynamic fracture simulations”,Mecánica Computacional, Vol. 24, pp. 1997-2018.
[14] Iturrioz, I., Miguel, L.F.F. and Riera, J.D. (2009), ”Dynamic fracture analysis of concrete or rock plates by means of the discrete element method”,Latin American Journal of Solids and Structures, Vol. 6, pp. 229-45.
[15] Kalthoff, J.F. and Winkler, S. (1988), ”Failure mode transition at high rates of shear loading”,DGM Informationsgesellschaft mbH, Impact Loading and Dynamic Behavior of Materials, Vol. 1, pp. 185-95.
[16] DOI: 10.1016/j.cma.2003.10.015 · Zbl 1067.74561 · doi:10.1016/j.cma.2003.10.015
[17] Kosteski, L., Barrios, R. and Iturrioz, I. (2010), ”Fractomechanics parameter calculus using the discrete element method”,Latin American Journal of Solids and Structures, Vol. 6 No. 4 (in press).
[18] DOI: 10.1007/s004660000212 · Zbl 1005.74018 · doi:10.1007/s004660000212
[19] Krysl, P. and Belytschko, T. (1999), ”The element free Galerkin method for dynamic propagation of arbitrary 3D cracks”,International Journal for Numerical Methods in Engineering, Vol. 154, pp. 33-150. · Zbl 0953.74078
[20] Kupfer, H.B and Gerstle, K.H (1973), ”Behaviour of concrete under biaxial stresses”,Journal of the Engineering Mechanics Division, American Society of Civil Engineers, Vol. 99 No. 4, pp. 853-66.
[21] Miguel, L.F., Iturrioz, I. and Riera, J.D. (2010), ”Size effects and mesh independence in dynamic fracture analysis of brittle materials”,Computer Methods Modeling in Engineering & Sciences, Vol. 56 No. 1, pp. 1-16. · Zbl 1231.74374
[22] DOI: 10.1002/nag.699 · Zbl 1273.74227 · doi:10.1002/nag.699
[23] Munjiza, A. (2009), ”Engineering computations”,International Journal for Computer-Aided Engineering and Software, Vol. 26/6, Guest editorial.
[24] DOI: 10.2514/3.7581 · Zbl 0379.70001 · doi:10.2514/3.7581
[25] DOI: 10.1046/j.1460-2695.2001.00429.x · doi:10.1046/j.1460-2695.2001.00429.x
[26] DOI: 10.1016/j.ijplas.2006.09.003 · Zbl 1119.74014 · doi:10.1016/j.ijplas.2006.09.003
[27] DOI: 10.1002/cnm.1640110506 · Zbl 0824.73076 · doi:10.1002/cnm.1640110506
[28] DOI: 10.1016/S0029-5493(97)00270-7 · doi:10.1016/S0029-5493(97)00270-7
[29] Riera, J.D. and Rocha, M.M. (1991), ”A note on the velocity of crack propagation in tensile fracture”,Revista Brasileira de Ciencias Mecanicas, Vol. XII No. 3, pp. 217-40.
[30] DOI: 10.1016/j.ijplas.2007.03.005 · Zbl 1155.74402 · doi:10.1016/j.ijplas.2007.03.005
[31] DOI: 10.1016/j.mechmat.2007.02.005 · doi:10.1016/j.mechmat.2007.02.005
[32] DOI: 10.1016/j.engstruct.2004.03.012 · doi:10.1016/j.engstruct.2004.03.012
[33] DOI: 10.1016/S0013-7944(97)00010-6 · doi:10.1016/S0013-7944(97)00010-6
[34] DOI: 10.1680/grim.2004.8.1.7 · doi:10.1680/grim.2004.8.1.7
[35] DOI: 10.1016/0020-7683(94)90154-6 · Zbl 0946.74557 · doi:10.1016/0020-7683(94)90154-6
[36] DOI: 10.1016/j.jmps.2005.02.003 · Zbl 1120.74793 · doi:10.1016/j.jmps.2005.02.003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.