×

The improved element-free Galerkin method for three-dimensional wave equation. (English) Zbl 1345.65059

Summary: The paper presents the improved element-free Galerkin (IEFG) method for three-dimensional wave propagation. The improved moving least-squares (IMLS) approximation is employed to construct the shape function, which uses an orthogonal function system with a weight function as the basis function. Compared with the conventional moving least-squares (MLS) approximation, the algebraic equation system in the IMLS approximation is not ill-conditioned, and can be solved directly without deriving the inverse matrix. Because there are fewer coefficients in the IMLS than in the MLS approximation, fewer nodes are selected in the IEFG method than in the element-free Galerkin method. Thus, the IEFG method has a higher computing speed. In the IEFG method, the Galerkin weak form is employed to obtain a discretized system equation, and the penalty method is applied to impose the essential boundary condition. The traditional difference method for two-point boundary value problems isselected for the time discretization. As the wave equations and the boundary-initial conditions depend on time, the scaling parameter, number of nodes and the time step length are considered for the convergence study.

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs

Software:

Mfree2D
Full Text: DOI

References:

[1] Selvadurai, A.P.S.: Partial Differential Equations in Mechanics. Springer, Berlin (2000) · Zbl 0967.35002
[2] Nettel, S.:Wave Physics:Oscillations-Solitons-Chaos.Springer, Berlin (2003) · Zbl 1043.70002
[3] Hirose, A.: Introduction to Wave Phenomena. Wiley, New York (1985)
[4] Wazwaz, A.M.: Partial differential equations: methods and applications. Swets & Zeitlinger B.V., Lisse, Netherlands (2002)
[5] Lapidus L., Pinder, G. F.: Numerical Solution of Partial Differential Equations In Science And Engineering. Wiley, New York (1982) · Zbl 0584.65056
[6] Dehghan, M.: Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices. Mathematics and Computers in Simulation 71, 16–30 (2006) · Zbl 1089.65085 · doi:10.1016/j.matcom.2005.10.001
[7] Dehghan, M.: On the solution of an initial-boundary value problem that combines Neumann and integral condition for the wave equation. Numerical Methods for Partial Differential Equations 21, 24–40 (2005) · Zbl 1059.65072 · doi:10.1002/num.20019
[8] Dehghan, M.: A computational study of the one-dimensional parabolic equation subject to nonclassical boundary specifications. Numerical Methods for Partial Differential Equations 22, 220–257 (2006) · Zbl 1084.65099 · doi:10.1002/num.20071
[9] Dehghan, M.: The one-dimensional heat equation subject to a boundary integral specification. Chaos, Solitons and Fractals 32, 661–675 (2007) · Zbl 1139.35352 · doi:10.1016/j.chaos.2005.11.010
[10] Dehghan, M.: Time-splitting procedures for the solution of the two-dimensional transport equation. Kybernetes 36, 791–805 (2007) · Zbl 1193.93013 · doi:10.1108/03684920710749857
[11] Kamruzzaman, M.: A new meshless collocation method for partial differential equations. Communications in Numerical Methods in Engineering 24, 1617–1639 (2008) · Zbl 1155.65080 · doi:10.1002/cnm.1055
[12] Xiong, Z.G.: Convergence of FEM with interpolated coefficients for semilinear hyperbolic equation. Journal of Computational and Applied mathematics 24, 313–317 (2008) · Zbl 1148.65079 · doi:10.1016/j.cam.2007.02.023
[13] Avilez-Valente, P., Seabra-Santos, F.J.: A Petrov-Galerkin finite element scheme for the regularized long wave equation. Computational Mechanics 34, 256–270 (2004) · Zbl 1091.76031 · doi:10.1007/s00466-004-0570-4
[14] Feng, Y.D., Wang, Y.S., Zhang. Z.M.: Analysis of transient wave scattering from an inclusion with a unilateral smoothly contact interface by BEM. Archive of Applied Mechanics 73, 337–347 (2003) · Zbl 1068.74612 · doi:10.1007/s00419-003-0290-9
[15] Gamallo, P., Astley. R.J.: The partition of unity finite element method for short wave acoustic propagation on non-uniform potential flows. International Journal for Numerical Methods in Engineering 65, 425–444 (2006) · Zbl 1178.76229 · doi:10.1002/nme.1459
[16] Carlos J.S., Alves, S., Valtchev, S.: Numerical comparison of two meshfree methods for acoustic wave scattering. Engineering Analysis with Boundary Elements 29, 371–382 (2005) · Zbl 1182.76924 · doi:10.1016/j.enganabound.2004.09.008
[17] Lu, Y.Y., Belytschko, T., Tabbara, M.,: Element-free Galerkin method for wave propagation and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 26, 131–153 (1995) · Zbl 1067.74599 · doi:10.1016/0045-7825(95)00804-A
[18] Bouillard, P., Lacroix, V., De Bel, E.: A wave-oriented meshless formulation for acoustical and vibro-acoustical applications. Wave Motion 39, 295–305 (2004) · Zbl 1163.74321 · doi:10.1016/j.wavemoti.2003.12.003
[19] Liu, G.R., Mesh Free Methods: Moving Beyond the Finite Element Method. CRC Press, Boca Raton (2003) · Zbl 1031.74001
[20] Nayroles, B., Touzot, G., Villon, P.: Generalizing the finite element method: Difference approximation and diffuse elements. Computational Mechanics 10, 583–594 (1992) · Zbl 0764.65068 · doi:10.1007/BF00364252
[21] Lancaster, P., Salkauskas, K.: Surfaces generated by moving least-squares methods. Mathematics Computation 37, 141–158 (1981) · Zbl 0469.41005 · doi:10.1090/S0025-5718-1981-0616367-1
[22] Liew, K.M., Cheng, Y., Kitipornchai, S.: Boundary elementfree method (BEFM) for two-dimensional elastodynamic analysis using Laplace transform. International Journal of Numerical Methods in Engineering 64, 1610–1627 (2005) · Zbl 1122.74533 · doi:10.1002/nme.1417
[23] Liew, K.M., Cheng, Y., Kitipornchai, S.: Boundary elementfree method (BEFM) and its application to two-dimensional elasticity problems. International Journal of Numerical Methods in Engineering 65, 1310–1332 (2006) · Zbl 1147.74047 · doi:10.1002/nme.1489
[24] Liew, K.M., Zou, G.P., Rajendran, S.: A spline strip kernel particle method and its application to two-dimensional elasticity problems. International Journal for Numerical Methods in Engineering 57, 599–616 (2003) · Zbl 1062.74659 · doi:10.1002/nme.689
[25] Zhang, Z., Zhao, P., Liew, K.M.: Improved element-free Galerkin method for two-dimensional potential problems. Engineering Analysis with Boundary Elements 33, 547–554 (2009) · Zbl 1244.65179 · doi:10.1016/j.enganabound.2008.08.004
[26] Zhang, Z., Zhao, P., Liew, K.M.: Analyzing three-dimensional potential problems with the improved element-free Galerkin method. Computational Mechanics 44, 273–284 (2009) · Zbl 1171.65083 · doi:10.1007/s00466-009-0364-9
[27] Frank, C.G., Liu, W.K.: Implementation of boundary conditions for meshless methods. Computer Methods in Applied Mechanics and Engineering 163, 205–230 (1998) · Zbl 0963.76068 · doi:10.1016/S0045-7825(98)00014-0
[28] Mukherjee Y.X., Mukherjee S.: On boundary conditions in the element-free Galerkin method. Computational Mechanics 19, 264–270 (1997) · Zbl 0884.65105 · doi:10.1007/s004660050175
[29] Ventura G.: An augmented Lagranging approach to essential boundary conditions in meshless methods. International Journal for Numerical Methods in Engineering 53, 825–843 (2002) · doi:10.1002/nme.314
[30] Zhang X., Liu X.H., Song K.Z., et al.: Least-square collocation meshless method. International Journal for Numerical Methods in Engineering 51, 1089–1100 (2001) · Zbl 1056.74064 · doi:10.1002/nme.200
[31] Krysl P., Belytschko T.: Element-free Galerkin method: Convergence of the continuous and discontinuous shape functions. Computer Methods in Applied Mechanics and Engineering 148, 257–277 (1997) · Zbl 0918.73125 · doi:10.1016/S0045-7825(96)00007-2
[32] Chung H.J., Belytschko T.: An error estimate in the EFG method. Computational mechanics 21, 91–100 (1998) · Zbl 0910.73060 · doi:10.1007/s004660050286
[33] Gavete L., Cuesta J.L., Ruiz A.: A procedure for approximation of the error in the EFG method. International Journal for Numerical Methods in Engineering 53, 677–690 (2002) · Zbl 1112.74564 · doi:10.1002/nme.307
[34] Gavete L., Gavete M.L.: A posteriori error approximation in EFG method. International Journal for Numerical Methods in Engineering 58, 2239–2263 (2003) · Zbl 1047.74081 · doi:10.1002/nme.850
[35] Gavete, L., Faclon, S.: An error indicator for the element free Galerkin method. European Journal of Mechanics-A/Solids 20, 327–341 (2001) · Zbl 1047.74080 · doi:10.1016/S0997-7538(00)01132-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.