×

Scattering of linear oblique water waves by an elastic bottom undulation in a two-layer fluid. (English) Zbl 1443.76108

Summary: A hydrodynamic model, with incorporation of elasticity, is considered to study oblique incident waves propagating over a small undulation on an elastic bed in a two-layer fluid, with the upper layer exposed to a free surface. Following the Euler-Bernoulli beam equation, the elastic bed is approximated as a thin elastic plate. The surface tension at the interface of the layers is completely ignored since its contribution will be minimal. While considering water waves passing over a deformable bottom, a significant change in the wave characteristics is observed due to the elasticity of the bottom which has an immense impact on the water wave kinematics and dynamics in addition to demonstrating the elastic behavior of the soil beneath. Time-harmonic waves propagate over an elastic bed with two different modes: the one corresponding to the smaller wavenumber propagates along the interface and the other one corresponding to the higher wavenumber along the free surface for any given frequency. Considering an irrotational motion in an incompressible and inviscid fluid, and applying perturbation technique, the first-order corrections to the velocity potentials are evaluated by an appropriate application of Fourier transform and, subsequently, the corresponding reflection and transmission coefficients are computed through integrals containing a shape function which depicts the bottom undulation. To validate the theory developed, one particular undulating bottom topography is taken up as an example in order to evaluate the hydrodynamic coefficients which are represented through graphs to establish the water wave energy conversion between those modes. The observation is that when the oblique wave is incident on the interface, energy transfer takes place to the free surface, but for free-surface oblique incident waves, no such energy transfer to the interface takes place because of the parameter ranges. It is noticed that reasonable changes in the elasticity of the bed have a significant impact when the propagating wave encounters a small elastic bottom undulation. Further, the values of reflection and transmission coefficients obtained for both the interfacial wave mode as well as the free-surface wave mode in the fluid are found to satisfy the important energy balance relations almost accurately. Such problems with a deformable bed, to be precise elastic here, will enable researchers to take up problems which take into account the characteristics of the infinite depth of soil beneath the bed, and the present study is expected to provide the necessary background.

MSC:

76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction
76B55 Internal waves for incompressible inviscid fluids
76M45 Asymptotic methods, singular perturbations applied to problems in fluid mechanics
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
86A05 Hydrology, hydrography, oceanography
Full Text: DOI

References:

[1] Bauer, HF, Hydroelastic vibrations in a rectangular container, Int J. Solids Struct., 17, 639-652 (1981) · Zbl 0465.73068 · doi:10.1016/0020-7683(81)90001-9
[2] Chamberlain, PG; Porter, D., Wave scattering in a two-layer fluid of varying depth, J. Fluid Mech., 524, 207-228 (2005) · Zbl 1065.76025 · doi:10.1017/S0022112004002356
[3] Chanda, A.; Bora, SN, Propagation of oblique waves over a small undulating elastic bottom topography in a two-layer fluid flowing through a channel, Int. J. Appl. Mech. (2020) · doi:10.1142/S1758825120500234
[4] Chen, X.; Wu, Y.; Cui, W.; Jensen, JJ, Review of hydroelasticity theories for global response of marine structures, Ocean Eng., 33, 439-457 (2006) · doi:10.1016/j.oceaneng.2004.04.010
[5] Chiba, M.; Watanabe, H.; Bauer, HF, Hydroelastic coupled vibrations in a cylindrical container with a membrane bottom containing liquid with surface tension, J. Sound Vib., 251, 4, 717-740 (2002) · doi:10.1006/jsvi.2001.3986
[6] Cho, IH; Kim, MH, Interaction of a horizontal flexible membrane with oblique incident waves, J. Fluid Mech., 367, 139-161 (1998) · Zbl 0931.74023 · doi:10.1017/S0022112098001499
[7] Das, D.; Mandal, BN; Chakrabarti, A., Energy identities in water wave theory for free-surface boundary condition with higher-order derivatives, Fluid Dyn. Res., 40, 253-272 (2008) · Zbl 1132.76011 · doi:10.1016/j.fluiddyn.2007.10.002
[8] Davies, AG, The reflection of wave energy by undulations on the sea bed, Dyn. Atmos. Oceans, 6, 207-232 (1982) · doi:10.1016/0377-0265(82)90029-X
[9] Davies, AG; Heathershaw, AD, Surface-wave propagation over sinusoidally varying topography, J. Fluid Mech., 144, 419-443 (1984) · doi:10.1017/S0022112084001671
[10] Dawson, TH, Wave propagation over a deformable sea floor, Ocean Eng., 5, 4, 227-234 (1978) · doi:10.1016/0029-8018(78)90001-X
[11] Devillard, P.; Dun-lop, F.; Souillard, B., Localization of gravity waves on a channel with a random bottom, J. Fluid Mech., 186, 521-538 (1988) · Zbl 0643.76012 · doi:10.1017/S0022112088000254
[12] Eyov, E.; Klar, A.; Kadri, U.; Stiassnie, M., Progressive waves in a compressible-ocean with an elastic bottom, Wave Motion, 50, 929-39 (2013) · Zbl 1454.86002 · doi:10.1016/j.wavemoti.2013.03.003
[13] Fox, C.; Squire, VA, Reflection and transmission characteristics at the edge of shore fast sea ice, J. Geophys. Res., 95, C7, 1629-1639 (1990) · doi:10.1029/JC095iC07p11629
[14] Fox, C.; Squire, VA, Coupling between an ocean and an ice shelf, Ann. Glaciol., 15, 101-108 (1991) · doi:10.1017/S0260305500009605
[15] Fox, C.; Squire, VA, On the oblique reflection and transmission of ocean waves at shore fast sea ice, Philos. Trans. R. Soc. Lond. A, 347, 185-218 (1994) · Zbl 0816.73009 · doi:10.1098/rsta.1994.0044
[16] Guazzelli, E.; Guyon, E.; Souillard, B., On the localization of shallow water waves by a random bottom, J. Phys. Lett., 44, 837-841 (1983) · doi:10.1051/jphyslet:019830044020083700
[17] Guazzelli, E.; Rey, V.; Belzons, M., Higher-order bragg reflection of gravity surface waves by periodic beds, J. Fluid Mech., 245, 301-317 (1992) · doi:10.1017/S0022112092000478
[18] Hassan, ULM; Meylan, MH; Peter, MA, Water-wave scattering by submerged elastic plates, Q. J. Mech. Appl. Math., 62, 3, 321-344 (2009) · Zbl 1170.76010 · doi:10.1093/qjmam/hbp008
[19] Heathershaw, AD, Seabed-wave resonance and sand bar growth, Nature, 296, 343-345 (1982) · doi:10.1038/296343a0
[20] Ibrahim, RA, Liquid Sloshing Dynamics Theory and Applications (2005), New York: Cambridge University Press, New York · Zbl 1103.76002
[21] Lamb, H., Hydrodynamics (1932), Cambridge: Cambridge University Press, Cambridge · JFM 58.1298.04
[22] Linton, CM; Cadby, JR, Scattering of oblique waves in a two-layer fluid, J. Fluid Mech., 461, 343-364 (2002) · Zbl 1006.76016 · doi:10.1017/S002211200200842X
[23] Maiti, P.; Mandal, BN, Scattering of oblique waves by bottom undulations in a two-layer fluid, J. Appl. Math. Comput., 22, 21-39 (2006) · Zbl 1148.76007 · doi:10.1007/BF02832035
[24] Mallard, W., Dalrymple, R.: Water waves propagationg over a deformeable bottom. In: Offshore Technology Conference, Houston, Texas, pp. 141-146 (1977)
[25] Martha, SC; Bora, SN; Chakrabarti, A., Oblique water wave scattering by small undulation on a porous sea-bed, Appl. Ocean Res., 29, 86-90 (2007) · doi:10.1016/j.apor.2007.07.001
[26] Mei, CC, Resonant reflection of surface water waves by periodic sandbars, J. Fluid Mech., 152, 315-335 (1985) · Zbl 0588.76022 · doi:10.1017/S0022112085000714
[27] Miles, JW, Oblique surface wave diffraction by a cylindrical obstacle, Dyn. Atmos. Oceans, 6, 121-123 (1981) · doi:10.1016/0377-0265(81)90019-1
[28] Mohapatra, SC; Sahoo, T., Surface gravity wave interaction with elastic bottom, Appl. Ocean Res., 33, 31-40 (2011) · doi:10.1016/j.apor.2010.12.001
[29] Mohapatra, S.; Bora, SN, Oblique wave scattering by an impermeable ocean-bed of variable depth in a two-layer fluid with ice cover, Z. Angew. Math. Phys., 63, 879-903 (2012) · Zbl 1264.76025 · doi:10.1007/s00033-012-0210-3
[30] Mohapatra, S., Effects of elastic bed on hydrodynamic forces for a submerged sphere in an ocean of finite depth, Z. Angew. Math. Phys., 68, 91 (2017) · Zbl 1386.76038 · doi:10.1007/s00033-017-0837-1
[31] Panda, S.; Martha, SC, Oblique wave scattering by undulating porous bottom in a two-layer fluid: Fourier transform approach, Geophys. Astrophys. Fluid Dyn., 108, 587-614 (2014) · Zbl 1541.86011 · doi:10.1080/03091929.2014.953948
[32] Porter, R.; Porter, D., Scattered and free waves over periodic beds, J. Fluid Mech., 483, 129-163 (2003) · Zbl 1055.76005 · doi:10.1017/S0022112003004208
[33] Saha, S.; Bora, SN, Elastic bottom effect on trapped waves in a two-layer fluid, Int. J. Appl. Mech., 7, 2, 1550028 (2015) · doi:10.1142/S1758825115500283
[34] Sarangi, MR; Mohapatra, S., Investigation on the effects of versatile deformating bed on a water wave diffraction problem, Ocean Eng., 164, 377-387 (2018) · doi:10.1016/j.oceaneng.2018.06.039
[35] Sarangi, MR; Mohapatra, S., Hydro-elastic wave proliferation over an impermeable seabed with bottom deformation, Geophys. Astrophys. Fluid Dyn., 113, 303-325 (2019) · Zbl 1499.76026 · doi:10.1080/03091929.2019.1584296
[36] Silva, R.; Salles, P.; Palacio, A., Linear wave propagating over a rapidly varying finite porous bed, Coast Eng., 44, 239-260 (2002) · doi:10.1016/S0378-3839(01)00035-7
[37] Stokes, G. G.: On the theory of oscillatory waves. Trans. Camb. Philos. Soc. 8, 441-455. Reprinted in Math. Phys. Pap., Cambridge University Press, London, vol. 1, pp. 314-326 (1847)
[38] Zhu, S., Water waves within a porous medium on an undulating bed, Coast Eng., 42, 87-101 (2001) · doi:10.1016/S0378-3839(00)00050-8
[39] An, Z.; Ye, Z., Band gaps and localization of water waves over one-dimensional topographical bottoms, Appl. Phys. Lett., 84, 2952-2954 (2004) · doi:10.1063/1.1695200
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.