×

Subexponential-time algorithms for finding large induced sparse subgraphs. (English) Zbl 1469.05159

Summary: Let \({\mathcal{C}}\) and \({\mathcal{D}}\) be hereditary graph classes. Consider the following problem: given a graph \(G\in{\mathcal{D}} \), find a largest, in terms of the number of vertices, induced subgraph of \(G\) that belongs to \({\mathcal{C}} \). We prove that it can be solved in \(2^{o(n)}\) time, where \(n\) is the number of vertices of \(G\), if the following conditions are satisfied:
i) the graphs in \({\mathcal{C}}\) are sparse, i.e., they have linearly many edges in terms of the number of vertices;
ii) the graphs in \({\mathcal{D}}\) admit balanced separators of size governed by their density, e.g., \({\mathcal{O}}(\varDelta )\) or \({\mathcal{O}}(\sqrt{m})\), where \(\varDelta\) and \(m\) denote the maximum degree and the number of edges, respectively and
iii) the considered problem admits a single-exponential fixed-parameter algorithm when parameterized by the treewidth of the input graph.
This leads, for example, to the following corollaries for specific classes \({\mathcal{C}}\) and \({\mathcal{D}} \):

a) a largest induced forest in a \(P_t\)-free graph can be found in \(2^{\tilde{{\mathcal{O}}}(n^{2/3})}\) time, for every fixed \(t\); and
b) a largest induced planar graph in a string graph can be found in \(2^{\tilde{{\mathcal{O}}}(n^{2/3})}\) time.

MSC:

05C85 Graph algorithms (graph-theoretic aspects)
05C42 Density (toughness, etc.)
05C60 Isomorphism problems in graph theory (reconstruction conjecture, etc.) and homomorphisms (subgraph embedding, etc.)
68Q25 Analysis of algorithms and problem complexity

References:

[1] Abrishami, T., Chudnovsky, M., Pilipczuk, M., Rzążewski, P., Seymour, P.: Induced subgraphs of bounded treewidth and the container method. CoRR abs/2003.05185. arXiv:2003.05185 (2020)
[2] Alekseev, V.E.: The effect of local constraints on the complexity of determination of the graph independence number. Combinatorial-algebraic methods in applied mathematics, pp. 3-13 (1982). (in Russian)
[3] Alekseev, VE, On easy and hard hereditary classes of graphs with respect to the independent set problem, Discrete Appl. Math., 132, 1-3, 17-26 (2003) · Zbl 1029.05140 · doi:10.1016/S0166-218X(03)00387-1
[4] Bacsó, G.; Lokshtanov, D.; Marx, D.; Pilipczuk, M.; Tuza, Z.; van Leeuwen, EJ, Subexponential-time algorithms for maximum independent set in \({P}_t\)-free and broom-free graphs, Algorithmica, 81, 2, 421-438 (2019) · Zbl 1428.05291 · doi:10.1007/s00453-018-0479-5
[5] Bliznets, I.; Fomin, FV; Pilipczuk, M.; Villanger, Y., Largest chordal and interval subgraphs faster than \(2^n\), Algorithmica, 76, 2, 569-594 (2016) · Zbl 1347.05236 · doi:10.1007/s00453-015-0054-2
[6] Bodlaender, HL; Drange, PG; Dregi, MS; Fomin, FV; Lokshtanov, D.; Pilipczuk, M., A \(c^k n 5\)-approximation algorithm for treewidth, SIAM J. Comput., 45, 2, 317-378 (2016) · Zbl 1333.05282 · doi:10.1137/130947374
[7] Bondy, JA; Simonovits, M., Cycles of even length in graphs, J. Combin. Theory Ser. B, 16, 2, 97-105 (1974) · Zbl 0283.05108 · doi:10.1016/0095-8956(74)90052-5
[8] Bonnet, É.; Rzążewski, P., Optimality program in segment and string graphs, Algorithmica, 81, 7, 3047-3073 (2019) · Zbl 1423.68331 · doi:10.1007/s00453-019-00568-7
[9] Brause, C., A subexponential-time algorithm for the maximum independent set problem in \(P_t\)-free graphs, Discrete Appl. Math., 231, 113-118 (2017) · Zbl 1369.05159 · doi:10.1016/j.dam.2016.06.016
[10] Chiarelli, N.; Hartinger, TR; Johnson, M.; Milanič, M.; Paulusma, D., Minimum connected transversals in graphs: new hardness results and tractable cases using the price of connectivity, Theor. Comput. Sci., 705, 75-83 (2018) · Zbl 1380.68219 · doi:10.1016/j.tcs.2017.09.033
[11] Chudnovsky, M., Pilipczuk, M., Pilipczuk, M., Thomassé, S.: On the maximum weight independent set problem in graphs without induced cycles of length at least five. CoRR abs/1903.04761. arXiv:1903.04761 (2019) · Zbl 1459.05234
[12] Cygan, M.; Fomin, FV; Kowalik, Ł.; Lokshtanov, D.; Marx, D.; Pilipczuk, M.; Pilipczuk, M.; Saurabh, S., Parameterized Algorithms (2015), Berlin: Springer, Berlin · Zbl 1334.90001 · doi:10.1007/978-3-319-21275-3
[13] Cygan, M.; Marx, D.; Pilipczuk, M.; Pilipczuk, M., Hitting forbidden subgraphs in graphs of bounded treewidth, Inf. Comput., 256, 62-82 (2017) · Zbl 1376.68062 · doi:10.1016/j.ic.2017.04.009
[14] Dvořák, Z.; Norin, S., Treewidth of graphs with balanced separations, J. Combin. Theory Ser. B, 137, 137-144 (2019) · Zbl 1416.05089 · doi:10.1016/j.jctb.2018.12.007
[15] Fomin, F.V., Gaspers, S., Lokshtanov, D., Saurabh, S.: Exact algorithms via monotone local search. In: STOC 2016, pp. 764-775. ACM (2016) · Zbl 1375.68185
[16] Fomin, F.V., Todinca, I., Villanger, Y.: Exact algorithm for the maximum induced planar subgraph problem. In: ESA 2011, LNCS, vol. 6942, pp. 287-298. Springer (2011) · Zbl 1346.05283
[17] Fomin, FV; Todinca, I.; Villanger, Y., Large induced subgraphs via triangulations and CMSO, SIAM J. Comput., 44, 1, 54-87 (2015) · Zbl 1357.05144 · doi:10.1137/140964801
[18] Grzesik, A., Klimošová, T., Pilipczuk, M., Pilipczuk, M.: Polynomial-time algorithm for maximum weight independent set on \({P}_6\)-free graphs. In: SODA 2019, pp. 1257-1271. SIAM (2019) · Zbl 1431.68047
[19] Kratochvíl, M.; Goljan, PK, String Graphs (1986), Prague: Academia, Prague · Zbl 0607.05031
[20] Kociumaka, T.; Pilipczuk, M., Deleting vertices to graphs of bounded genus, Algorithmica, 81, 9, 3655-3691 (2019) · Zbl 1429.68194 · doi:10.1007/s00453-019-00592-7
[21] Komusiewicz, C., Tight running time lower bounds for vertex deletion problems, ACM Trans. Comput. Theory, 10, 2, 6:1-6:18 (2018) · Zbl 1427.68245 · doi:10.1145/3186589
[22] Kratochvíl, J., String graphs. i. The number of critical nonstring graphs is infinite, J. Comb. Theory Ser. B, 52, 1, 53-66 (1991) · Zbl 0675.05058 · doi:10.1016/0095-8956(91)90090-7
[23] Kratochvíl, J., String graphs. II. Recognizing string graphs is NP-hard, J. Comb. Theory Ser. B, 52, 1, 67-78 (1991) · Zbl 0661.05054 · doi:10.1016/0095-8956(91)90091-W
[24] Kratochvíl, J.; Matousek, J., String graphs requiring exponential representations, J. Comb. Theory Ser. B, 53, 1, 1-4 (1991) · Zbl 0675.05059 · doi:10.1016/0095-8956(91)90050-T
[25] Lee, J.R.: Separators in region intersection graphs. In: ITCS 2017, LIPIcs, vol. 67, pp. 1:1-1:8. Schloss Dagstuhl—Leibniz-Zentrum für Informatik (2017) · Zbl 1402.05151
[26] Lewis, JM; Yannakakis, M., The node-deletion problem for hereditary properties is NP-complete, J. Comput. Syst. Sci., 20, 2, 219-230 (1980) · Zbl 0436.68029 · doi:10.1016/0022-0000(80)90060-4
[27] Lozin, VV; Milanič, M., A polynomial algorithm to find an independent set of maximum weight in a fork-free graph, J. Discrete Algorithms, 6, 4, 595-604 (2008) · Zbl 1154.90607 · doi:10.1016/j.jda.2008.04.001
[28] Novotná, J., Okrasa, K., Pilipczuk, M., Rzazewski, P., van Leeuwen, E.J., Walczak, B.: Subexponential-time algorithms for finding large induced sparse subgraphs. In: B.M.P. Jansen, J.A. Telle (eds.) 14th International Symposium on Parameterized and Exact Computation, IPEC 2019, September 11-13, 2019, Munich, Germany, LIPIcs, vol. 148, pp. 23:1-23:11. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.IPEC.2019.23 (2019) · Zbl 1515.68252
[29] Paulusma, D.: Personal communication
[30] Pilipczuk, M.: Problems parameterized by treewidth tractable in single exponential time: a logical approach. In: MFCS 2011, vol. 6907, pp. 520-531. Springer (2011) · Zbl 1343.68120
[31] Pilipczuk, M., Pilipczuk, M.: Finding a maximum induced degenerate subgraph faster than \(2^n\). In: IPEC 2012, LNCS, vol. 7535, pp. 3-12. Springer (2012) · Zbl 1374.68726
[32] Ringel, G., Das Geschlecht des vollständiger Paaren Graphen, Abh. Math. Sem. Univ. Hamburg, 28, 139-150 (1965) · Zbl 0132.21203 · doi:10.1007/BF02993245
[33] Speckenmeyer, E.: Untersuchungen zum Feedback Vertex Set Problem in ungerichteten Graphen. Ph.D. thesis, Universität Paderborn (1983) (in German) · Zbl 0534.68046
[34] Thomassen, C., Embeddings of graphs, Discrete Math., 124, 1-3, 217-228 (1994) · Zbl 0797.05035 · doi:10.1016/0012-365X(92)00062-V
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.