×

A finite element modelling for directly determining intensity factors of piezoelectric materials with cracks. (English) Zbl 1264.74072

From the summary: The electric potential and displacement fields near a crack tip of piezoelectric materials are first used to construct a finite element version for directly determining intensity factors of piezoelectric materials with cracks. A singular finite element is constituted and a new method to calculate intensity factors of piezoelectric materials with cracks is obtained without any post-processing procedures. Detailed derivations are given and the results obtained with present method are good agreement with those of theoretical results, the FEM data by ANSYS and singular electromechanical crack tip elements. The results to the different selections of the structural dimensions are carried out. Numerical examples demonstrate the accuracy and validity of the novel element of present method.

MSC:

74G70 Stress concentrations, singularities in solid mechanics
74R10 Brittle fracture
74S05 Finite element methods applied to problems in solid mechanics
74F15 Electromagnetic effects in solid mechanics
Full Text: DOI

References:

[1] Cao ZJ, Xu MJ, Kuang ZB (2004) A singulaer finite element modelling of blunt crack problems and numerical analysis. Acta Aeronautica et Astronautica Sinica 25(5): 470–472
[2] Creager M, Paris PC (1967) Elastic field equations for blunt cracks with reference to stress corrosion cracking. Int J Fract 3: 247–251
[3] Deeg WF (1980) The analysis of dislocation, crack and inclusion problem in piezoelectric solids. Ph.D. thesis, Stanford University, CA
[4] Gao CF, Fan WX (1999) Exact solutions for the plane problem in piezoelectric materials with an elliptic or a crack. Int J Solids Struct 36: 2527–2540 · Zbl 0955.74024 · doi:10.1016/S0020-7683(98)00120-6
[5] Grubner O, Kamlah M, Munz D (2003) Finite element analysis of cracks in piezoelectric materials taking into account the permittivity of the crack medium. Eng Fract Mech 70: 1399–1413 · doi:10.1016/S0013-7944(02)00117-0
[6] Hom C, Shanhar N (1996) A finite method for electrostrictive ceramic devices. Int J Solids Struct 33(12): 1757–1779 · Zbl 0918.73271 · doi:10.1016/0020-7683(95)00123-9
[7] Huang ZY, Kuang ZB (2000) Asymptotic electroelastic field near a blunt crack tip in a transversely isotropic piezoelectric material. Mech Res Commun 27(1): 601–606 · Zbl 1041.74022 · doi:10.1016/S0093-6413(00)00135-X
[8] Kuang ZB (1982) The stress field near the blunt crack tip and the fracture criterion. Eng Fract Mech 16: 19–33 · doi:10.1016/0013-7944(82)90032-7
[9] Kuang ZB, Ma FS (2002) The crack tip fields. Xi’an Jiaotong University Publishing House, Xi’an of China
[10] Kumar S, Singh RN (1996) Crack propagation in piezoelectric materials under combined mechanical and Electrical load. Acta Mater 44(1): 173–200 · doi:10.1016/1359-6454(95)00175-3
[11] Kumar S, Singh RN (1997) Energy release rate and crack propagation in piezoelectric materials. Part I: mechanical/Electrical load. Acta Mater 45(2): 849–868 · doi:10.1016/S1359-6454(96)00175-9
[12] Kuna M (1998) Finite element analyses of crack problems in piezoelectric structures. Comput Mater Sci 13: 67–80 · doi:10.1016/S0927-0256(98)00047-0
[13] Noda N, Kimura S (2000) Thermal deformation of a piezothermoelastic composite plate. JSME Int J A43: 117–123 · doi:10.1299/jsmea.43.117
[14] Parton VZ (1976) Fracture mechanics of piezoelectric materials. ACTA Astr 3: 671–683 · Zbl 0351.73115 · doi:10.1016/0094-5765(76)90105-3
[15] Rao SS, Sunar M (1994) Piezoelectricity and its Use in disturbance sensing and control of flexible structures: a survey. Appl Mech Rev 47(4): 113–123 · doi:10.1115/1.3111074
[16] Shen SP, Kuang ZB (1998) Interface crack in bipiezothermoelastic media and the interaction with a point heat source. Int J Solids Struct 35: 899–915
[17] Shindo Y, Watanabe K, Narita F (2000) Electroelastic analysis of a piezoelectric ceramic strip with a central crack. Int J Eng Sci 38: 1–19 · doi:10.1016/S0020-7225(99)00015-4
[18] Sosa HA (1991) Plane problem in piezoelectric media with defects. Int J Solids Struct 28(4): 491–505 · Zbl 0749.73070 · doi:10.1016/0020-7683(91)90061-J
[19] Sosa HA (1992) On the fracture mechanics of piezoelectric solids. Int J Solids Struct 29(21): 2613–2622 · Zbl 0775.73215 · doi:10.1016/0020-7683(92)90225-I
[20] Sosa H, Khutoryansky N (1996) New developments concerning piezoelectric materials with defects. Int J Solids Struct 33(23): 3399–3414 · Zbl 0924.73198 · doi:10.1016/0020-7683(95)00187-5
[21] Toupin RA (1956) The elastic dielectric. J Rational Mech Anal 5: 849–915 · Zbl 0072.23803
[22] Wang Q, Wang GQ, Liu ZX, Ding HJ (2003) The boundary contour method for piezoelectric media with linear boundary elements. Int J Numer Methods Eng 56(13): 1847–1860 · Zbl 1155.74426 · doi:10.1002/nme.625
[23] Wang XW, Zhou Y, Zhou WL (2004) A novel hybrid finite element with a hole for analysis of plane piezoelectric medium with defects. Int J Solids Struct 41(24–25): 7111–7128 · Zbl 1181.74142 · doi:10.1016/j.ijsolstr.2004.06.012
[24] Wang ZC, Zhang LS, Liu CT (1990) A new formulated of a quasi-compatible finite element and its application in fracture mechanics. Eng Fract Mech 37(6): 1195–1201 · doi:10.1016/0013-7944(90)90061-K
[25] Wu CC, Sze KY, Huang YQ (2001) Numerical solutions on fracture of piezoelectric materials by hybrid element. Int J Solids Struct 28: 4315–4329 · Zbl 0997.74021 · doi:10.1016/S0020-7683(00)00279-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.