×

Kinematic analysis of linkages based on finite elements and the geometric stiffness matrix. (English) Zbl 1156.70004

Summary: This paper presents a numerical approach to rigid body linkage kinematics, based on a reduced form of stiffness matrix and on structural analysis. This matrix may be referred to as geometric stiffness matrix, or simply as geometric matrix. It is derived from basic nodes and length constraints, and provides full information on kinematic properties of any linkage, including positions, velocities, accelerations, jerks and singular positions. This approach offers a number of major advantages, especially where simplicity and generality are concerned. The computational cost is also very low, because of the simplicity of numerical calculations and the reduced dimensions of the matrices involved.

MSC:

70B15 Kinematics of mechanisms and robots
70-08 Computational methods for problems pertaining to mechanics of particles and systems
Full Text: DOI

References:

[1] Kozhevnikov, S. N.: Mecanismos, (1981)
[2] Hain, K.: Applied kinematics, (1967)
[3] Paul, B.: Kinematics and dynamics of planar machinery, (1979)
[4] Erdman, A. G.; Sandor, G. N.: Mechanism design: analysis and synthesis, (1997)
[5] Kinzel, G. L.; Chang, Ch.: The analysis of planar linkages using a modular approach, Mechanism and machine theory 19, 165-172 (1984)
[6] I.I. Artobolevskii, Théorie des Mécanismes et des Machines, MIR, 1977. · Zbl 0377.70002
[7] Manolescu, N.: For a united point of view in the study of structural analysis of kinematic chains and mechanisms, Journal of mechanical design 3, 149-169 (1968)
[8] Suh, C. H.; Radcliffe, C. W.: Kinematics and mechanism design, (1978)
[9] S. Molian, Software for mechanism design, in: Proceedings of Mechanisms Conference, vol. 2, 1984. · Zbl 0934.70001
[10] Galletti, C. U.: A note on modular approaches to planar linkage kinematic analysis, Mechanism and machine theory 21, 385-391 (1986)
[11] Innocenti, C.: Position analysis in analytical form of the 7-link assur kinematic chain featuring one ternary link connected to ternary links only, Mechanism and machine theory 32, 501-509 (1997)
[12] Funabashi, H.: A study on completely computer-assisted kinematic analysis of planar link mechanisms, Mechanism and machine theory 21, 473-479 (1986)
[13] A.N. Almadi, A.K. Dhingra, D. Kohli, Displacement analysis of ten-link kinematic chains using homotopy, in: Proceedings of 9th World Congress on the Theory of Machines and Mechanisms, vol. 1, 1995, pp. 90 – 94.
[14] Morgan, A. P.: Solving polynomial systems using continuation for engineering and scientific problems, (1987) · Zbl 0733.65031
[15] Wampler, C. W.: Solving the kinematics of planar mechanisms, Journal of mechanical design 121, 387-391 (1999)
[16] Nielsen, J.; Roth, B.: Solving the input/output problem for planar mechanisms, Journal of mechanical design 121, 206-211 (1999)
[17] B. Buchberger, Gröbner bases: an algorithmic method in polynomial ideal theory, in: N.K. Bose (Ed.), Multidimensional Systems Theory, Holland, 1985, pp.184 – 232. · Zbl 0587.13009
[18] Besseling, J. F.; Ernst, L. J.; Van Der Werff, K.: Geometrical and physical nonlinearities: some developments in The Netherlands, Computer methods in applied mechanics and engineering 17 – 18, 131-157 (1979) · Zbl 0404.73077 · doi:10.1016/0045-7825(79)90085-9
[19] Van Der Werff, K.: Kinematic and dynamic analysis of mechanisms, A finite element approach, (1977) · Zbl 0365.70003
[20] De Jalón, J. García; Serna, M. A.; Avilés, R.: Computer method for kinematic analysis of lower pair mechanisms I, Mechanism and machine theory 16, 543-556 (1981)
[21] De Jalón, J. García; Serna, M. A.; Avilés, R.: Computer method for kinematic analysis of lower pair mechanisms II, Mechanism and machine theory 16, 557-566 (1981)
[22] Serna, M. A.; Avilés, R.; De Jalón, J. García: Dynamic analysis of plane mechanisms with lower pairs in basic coordinates, Mechanism and machine theory 17, 397-404 (1982)
[23] Avilés, R.; Ajuria, M. B.; De Jalón, J. García: A fairly general method for the optimum synthesis of mechanisms, Mechanism and machine theory 20, 321-328 (1985)
[24] Avilés, R.; Navalpotro, S.; Amezua, E.; Hernández, A.: An energy-based general method for the optimum synthesis of mechanisms, Journal of mechanical design (ASME) 116, No. 1, 127-136 (1994)
[25] Vallejo, J.; Avilés, R.; Hernández, A.; Amezua, E.: Nonlinear optimization of planar linkages for kinematic syntheses, Mechanism and machine theory 30, No. 4, 501-518 (1995)
[26] Avilés, R.; Ajuria, M. B. G.; Hormaza, M. V.; Hernández, A.: A procedure based on finite elements for the solution of nonlinear problems in the kinematic analysis of mechanisms, Finite elements in analysis and design 22, No. 4, 304-328 (1996) · Zbl 0875.70011 · doi:10.1016/0168-874X(95)00017-N
[27] Avilés, R.; Ajuria, M. B. G.; Vallejo, J.; Hernández, A.: A procedure for the optimal synthesis of planar mechanisms based on nonlinear position problems, International journal for numerical methods in engineering 40, No. 8, 1505-1524 (1997)
[28] Avilés, R.; Ajuria, M. B. G.; Bilbao, A.; Vallejo, J.: Lagrange multipliers and the primal-dual method in non-linear static equilibrium of multibody systems, Communications in numerical methods in engineering 14, 463-472 (1998) · Zbl 0913.73050 · doi:10.1002/(SICI)1099-0887(199805)14:5<463::AID-CNM165>3.0.CO;2-W
[29] Avilés, R.; Ajuria, M. B. G.; Gómez-Garay, V.; Navalpotro, S.: Comparison among nonlinear optimization methods for the static equilibrium analysis of multibody systems with rigid and elastic elements, Mechanism and machine theory 35, No. 8, 1151-1168 (2000) · Zbl 1140.70382 · doi:10.1016/S0094-114X(99)00053-1
[30] Avilés, R.; Ajuria, M. B. G.; Amezua, E.; Gómez-Garay, V.: A finite element approach to the position problems in open-loop variable geometry trusses, Finite elements in analysis and design 34, 233-255 (2000) · Zbl 0980.74055 · doi:10.1016/S0168-874X(99)00041-4
[31] Avilés, R.; Vallejo, J.; Ajuria, G.; Agirrebeitia, J.: Second-order methods for the optimum synthesis of multibody systems, Structural and multidisciplinary optimization 19, No. 3, 192-203 (2000)
[32] Agirrebeitia, J.; Avilés, R.; Fernández, I.; Ajuria, G.: A method for the study of position in highly redundant multibody systems in environments with obstacles, IEEE transactions on robotics & automation 18, No. 2, 257-262 (2002)
[33] Simionescu, P. A.; Beale, D.: Synthesis and analysis of the five-link rear suspension system used in automobiles, Mechanism and machine theory 37, 815-832 (2002) · Zbl 1140.70413 · doi:10.1016/S0094-114X(02)00037-X
[34] Agirrebeitia, J.; Avilés, R.; Fernández, I.; Ajuria, G.: Inverse position problem in highly redundant multibody systems in environments with obstacles, Mechanism and machine theory 38, No. 11, 1215-1235 (2003) · Zbl 1062.70507 · doi:10.1016/S0094-114X(03)00068-5
[35] Hernández, A.; Altuzarra, O.; Avilés, R.; Petuya, V.: Kinematic analysis of mechanisms via a velocity equation based in a geometric matrix, Mechanism and machine theory 38, No. 12, 1413-1429 (2003) · Zbl 1062.70525 · doi:10.1016/S0094-114X(03)00095-8
[36] Altuzarra, O.; Pinto, C.; Avilés, R.; Hernández, A.: A practical procedure to analyze singular configurations in closed kinematic chains, IEEE transactions on robotics 20, No. 6, 929-940 (2004)
[37] Fernández, I.; Agirrebeitia, J.; Avilés, R.; Angulo, C.: Kinematical synthesis of 1-dof mechanisms using finite elements and genetic algorithms, Finite elements in analysis and design 15, No. 41, 1441-1463 (2005)
[38] Hunt, K. H.: Kinematic geometry of mechanisms, (1978) · Zbl 0401.70001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.