×

Capacities, Green function, and Bergman functions. (English) Zbl 1539.31001

S. Fu [Proc. Am. Math. Soc. 121, No. 3, 979–980 (1994; Zbl 0808.32024)] inductively applied the famed Ohsawa-Takegoshi extension theorem [T. Ohsawa and K. Takegoshi, Math. Z. 195, 197–204 (1987; Zbl 0625.32011)] to show that on a bounded pseudoconvex domain in \(\mathbb{C}^n\) with boundary of class \(C^2\), the product of the Bergman kernel function on the diagonal with the square of the distance to the boundary is bounded below by a positive constant. The author generalizes this technique by proving and applying some quantitative estimates in one-dimensional potential theory.
One of the main results states that the indicated lower bound on the Bergman kernel still holds when the hypothesis of class \(C^2\) boundary is replaced by the hypothesis that the boundary is locally the graph of a continuous function. Another of the striking theorems in the article is that the estimate on the Bergman kernel holds for every bounded pseudoconvex Runge domain.

MSC:

31A15 Potentials and capacity, harmonic measure, extremal length and related notions in two dimensions
32A25 Integral representations; canonical kernels (Szegő, Bergman, etc.)
32T27 Geometric and analytic invariants on weakly pseudoconvex boundaries
32U35 Plurisubharmonic extremal functions, pluricomplex Green functions

References:

[1] B.Almer, Sur quelques problémes de la théorie des fonctions de deux variables complexes, Arkiv för Mat. Ast. o. Fys.17 (1922), no. 7, 1-70. · JFM 48.1229.03
[2] Z.Błocki, The Bergman metric and the pluricomplex Green function, Trans. Amer. Math. Soc.357 (2004), 2613-2625. · Zbl 1071.32008
[3] Z.Błocki, Suita conjecture and the Ohsawa-Takegoshi extension theorem, Invent. Math.193 (2013), 149-158. · Zbl 1282.32014
[4] Z.Błocki and P.Pflug, Hyperconvexity and Bergman completeness, Nagoya Math. J.151 (1998), 221-225. · Zbl 0916.32016
[5] Z.Błocki and W.Zwonek, One dimensional estimates for the Bergman kernel and logarithmic capacity, Proc. Amer. Math. Soc.146 (2018), 2489-2495. · Zbl 1398.30038
[6] L.Carleson and T. W.Gamelin, Complex dynamics, Springer, Berlin, 1993. · Zbl 0782.30022
[7] L.Carleson and V.Totik, Hölder continuity of Green’s functions, Acta Sci. Math. (Szeged)70 (2004), 558-608. · Zbl 1076.30026
[8] B.‐Y.Chen, Completeness of the Bergman metric on non‐smooth pseudoconvex domains, Ann. Polon. Math.71 (1999), 242-251. · Zbl 0937.32014
[9] B.‐Y.Chen and J.‐H.Zhang, The Bergman metric on a Stein manifold with a bounded plurisubharmonic function, Trans. Amer. Math. Soc.354 (2002), 2997-3009. · Zbl 0997.32011
[10] B.‐Y.Chen, An essay on Bergman completeness, Ark. Mat.51 (2013), 269-291. · Zbl 1276.32011
[11] B.‐Y.Chen, Bergman kernel and hyperconvexity index, Anal. PDE10 (2017), 1429-1454. · Zbl 1368.32003
[12] B.‐Y.Chen, Every bounded pseudoconvex domain with Hölder boundary is hyperconvex, Bull. Lond. Math. Soc.53 (2021), 1009-1015. · Zbl 1481.32017
[13] E. B.Davis, Heat kernels and spectral theory, Cambridge University Press, Cambridge, 1989. · Zbl 0699.35006
[14] F.Docquier and H.Grauert, Levisches Problem und Rungescher Satz fur Teilgebiete Steinscher Mannigfaltigkeiten, Math. Ann.140 (1960), 94-123. · Zbl 0095.28004
[15] K.Diederich and T.Ohsawa, An estimate for the Bergman distance on pseudoconvex domains, Ann. of Math.141 (1995), 181-190. · Zbl 0828.32002
[16] S.Fu, A sharp estimate on the Bergman kernel of a pseudoconvex domain, Proc. Amer. Math. Soc.121 (1994), 979-980. · Zbl 0808.32024
[17] J. B.Garnett and D.Marshall, Harmonic measure, Cambridge University Press, Cambridge, 2005. · Zbl 1077.31001
[18] A.Grigor’yan, Analytic and geometric background for recurrence and non‐explosion of the Brownian motion on Riemannian manifolds, Bull. Amer. Math. Soc.36 (1999), 135-249. · Zbl 0927.58019
[19] M.Grüter and K.‐O.Widman, The Green function for uniformly elliptic equations, Manuscripta Math.37 (1982), 303-342. · Zbl 0485.35031
[20] G.Herbort, The Bergman metric on hyperconvex domains, Math. Z.232 (1999), 183-196. · Zbl 0933.32048
[21] L.Hörmander, \(L^2\) estimates and existence theorems for the \(\bar{\partial } \)‐operator, Acta Math.113 (1965), 89-152. · Zbl 0158.11002
[22] P.Jucha, Bergman completeness of Zalcman type domains, Studia Math.163 (2004), 71-83. · Zbl 1054.32005
[23] A.El Kasimi, Approximation polyn \(\hat{o}\) miale dans les domains étoilés de \(\mathbb{C}^n\), Complex Variables10 (1988), 179-182. · Zbl 0627.32008
[24] C. E.Kenig, Harmonic analysis techniques for second order elliptic boundary value problems, Regional Conference Series in Mathematics, vol. 83, Amer. Math. Soc., Providence, RI, 1994. · Zbl 0812.35001
[25] E. H.Lieb, On the lower eigenvalue of the Laplacian for the intersection of two domains, Invent. Math.74 (1983), 441-448. · Zbl 0538.35058
[26] T.Ohsawa, On the Bergman kernel of hyperconvex domains, Nagoya Math. J.129 (1993), 43-52. · Zbl 0774.32016
[27] T.Ohsawa and K.Takegoshi, On the extension of \(L^2\)‐holomorphic functions, Math. Z.195 (1987), 197-204. · Zbl 0625.32011
[28] P.Pflug and W.Zwonek, Logarithmic capacity and Bergman functions, Arch. Math. (Basel)80 (2003), 536-552. · Zbl 1037.30009
[29] P.Pflug and W.Zwonek, Bergman completeness of unbounded Hartogs domains, Nagoya Math. J.180 (2005), 121-133. · Zbl 1094.32004
[30] H.Pommerenke, Uniformly perfect sets and the Poincaré metric, Arch. Math. (Basel)32 (1979), 192-199. · Zbl 0393.30005
[31] T.Ransford, Potential theory in the complex plane, Cambridge University Press, Cambridge, 1995. · Zbl 0828.31001
[32] Y. T.Siu, Pseudoconvexity and the problem of Levi, Bull. Amer. Math. Soc.84 (1978), 481-512. · Zbl 0423.32008
[33] N.Wiener, Certain notions in potential theory, J. Math. Phys.3 (1924), 24-51. · JFM 51.0360.05
[34] N.Wiener, The Dirichlet problem, J. Math. Phys.3 (1924), 127-146. · JFM 51.0361.01
[35] Y.Xiong and Z.Zheng, Bergman functions on weakly uniformly perfect domains, https://arxiv.org/abs/2303.03241.
[36] W.Zwonek, Wiener’s type criterion for Bergman exhaustiveness, Bull. Pol. Acad. Sci. Math.50 (2002), 297-311. · Zbl 1016.32004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.