×

Estimates of invariant distances on “convex” domains. (English) Zbl 1305.32001

A domain \(\Omega\subset {\mathbb C}^n\) is called \({\mathbb C}\)-convex, if its intersection with any complex line is contractible. For smooth bounded \(\Omega\) this condition is equivalent to the condition that for any boundary point \(\zeta \) of \(\Omega\) the holomorphic tangent space does not trespass \(\Omega\). By \(d_\Omega^B\), \(d_\Omega^C\) and \(d_\Omega^K\) let us denote the invariant pseudodistance functions of Bergman, Carathéodory, and Kobayashi, respectively.
Then the author establishes lower bounds for the above distances in terms of the boundary distance \(\delta_\Omega\) of \(\Omega\), more precisely, his results are:
(1) For any proper \({\mathbb C}\)-convex domain \(D \subset {\mathbb C}^n\) one has \[ d_D^C (z,w) \geq \frac{1}{4}\log \,\frac{\delta_D(z)}{\delta_D(w)}. \]
(2) If \(D\) is bounded, then, for any compact \(K \subset D\) there is a constant \(c_K>0\) such that \[ d_D^B(z,w)\geq \frac{1}{4} \log \,\frac{1}{\delta_D(w)} - c_K \] for any \(z \in K\), \(w \in D\).
These estimates apply also to the Kobayashi distance, since \(d_D^K , d_D^B\geq d_D^C\) and one has also, by work of Nikolov-Pflug-Zwonek, \(d_D^K \leq 4 d_D^B \leq c_n d_D^K\) with some constant \(c_n\), for any \({\mathbb C}\)-convex domain \(D \subset {\mathbb C}^n\).
The author also obtains analogous results in the special case of convexifiable domains in \({\mathbb C}^n\). Finally he proves a sharp lower and upper estimate for \(d_D^C\) on a planar domain with a Dini-smooth boundary.

MSC:

32A25 Integral representations; canonical kernels (Szegő, Bergman, etc.)
32F17 Other notions of convexity in relation to several complex variables
32F45 Invariant metrics and pseudodistances in several complex variables

References:

[1] Abate, M.: Iteration Theory of Holomorphic Maps on Taut Manifolds. Mediterranean Press, Cosenza (1989) · Zbl 0747.32002
[2] Andersson, M., Passare, M., Sigurdsson, R.: Complex Convexity and Analytic Functionals. Birkhäuser, (2004) · Zbl 1057.32001
[3] Balogh, Z.M., Bonk, M.: Gromov hyperbolicity and the Kobayashi metric on strictly pseudoconvex domains. Comment. Math. Helv. 75, 504-533 (2000) · Zbl 0986.32012 · doi:10.1007/s000140050138
[4] Błocki, Z.: The Bergman metric and the pluricomplex Green function. Trans. Am. Math. Soc. 357, 2613-2625 (2005) · Zbl 1071.32008 · doi:10.1090/S0002-9947-05-03738-4
[5] Chen, B.-Y., Fu, S.: Comparison of the Bergman and Szegö kernels. Adv. Math. 228, 2366-2384 (2011) · Zbl 1229.32008 · doi:10.1016/j.aim.2011.07.013
[6] Diederich, K., Ohsawa, T.: An estimate for the Bergman distance on pseudoconvex domains. Ann. Math. 141, 181-190 (1995) · Zbl 0828.32002 · doi:10.2307/2118631
[7] Forstnerič, F., Rosay, J.P.: Localization of the Kobayshi metric and the boundary continuity of proper holomorphic mappings. Math. Ann 279, 239-252 (1987) · Zbl 0644.32013 · doi:10.1007/BF01461721
[8] Herbort, G.: Estimation on invariant distances on pseudoconvex domains of finite type in dimension two. Math. Z. 251, 673-703 (2005) · Zbl 1081.32007 · doi:10.1007/s00209-005-0829-2
[9] Jacquet, D.: \[{{\mathbb{C}}} \]-convex domains with \[C^2\] boundary. Complex Var. Elliptic Equ. 51, 303-312 (2006) · Zbl 1116.32006 · doi:10.1080/17476930600585738
[10] Jarnicki, M., Pflug P.: Invariant distances and metrics in complex analysis. de Gruyter Exp. Math. 9, de Gruyter, Berlin (1993) · Zbl 0789.32001
[11] Lempert, L.: Intrinsic distances and holomorphic retracts, Complex analysis and applications ’81, 341-364. Sofia, (1984) · Zbl 0583.32060
[12] Mercer, P.R.: Complex geodesics and iterates of holomorphic maps on convex domains in \[{{\mathbb{C}}}^n\]. Trans. Am. Math. Soc. 338, 201-211 (1993) · Zbl 0790.32026
[13] Nikolov, N., Pflug, P., Thomas, P.J.: Upper bound for the Lempert function of smooth domains. Math. Z. 266, 425-430 (2010) · Zbl 1207.32010 · doi:10.1007/s00209-009-0577-9
[14] Nikolov, N., Pflug, P., Zwonek, W.: Estimates for invariant metrics on \[{{\mathbb{C}}} \]-convex domains. Trans. Am. Math. Soc. 363, 6245-6256 (2011) · Zbl 1232.32005 · doi:10.1090/S0002-9947-2011-05273-6
[15] Pflug, P., Zwonek, W.: Logarithmic capacity and Bergman functions. Arch. Math. 80, 536-552 (2003) · Zbl 1037.30009 · doi:10.1007/s0013-003-0096-6
[16] Seidel, W., Walsh, J.L.: On the derivatives of functions analytic in the unit circle and their radii of univalence and of p-valence. Trans. Am. Math. Soc. 52, 128-216 (1942) · Zbl 0060.22002
[17] Sweers, G.: Positivity for a strongly coupled elliptic system by Green function estimates. J. Geom. Anal. 4, 121-142 (1994) · Zbl 0792.35048 · doi:10.1007/BF02921596
[18] Venturini, S.: Comparision between the Kobayashi and Carathéodory distances on strongly pseudoconvex bounded domains in \[{{\mathbb{C}}}^n\]. Proc. Am. Math. Soc. 107, 725-730 (1989) · Zbl 0692.32013
[19] Warszawski, T.: Boundary behavior of the Kobayashi distance in pseudoconvex Reinhardt domains. Michigan Math. J. 61, 575-592 (2012) · Zbl 1256.32010 · doi:10.1307/mmj/1347040260
[20] Pommerenke, Ch.: Boundary Behaviour of Conformal Maps, Grundl. math. Wissensch. 299. Springer, Berlin (1992) · Zbl 0762.30001 · doi:10.1007/978-3-662-02770-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.