×

Bergman completeness of unbounded Hartogs domains. (English) Zbl 1094.32004

The authors study the Bergman metric of unbounded pseudoconvex domains in \(\mathbb C^n\). After generalizing a few results up to now known for bounded domains only to the unbounded case, they present a new class of Bergman complete not hyperconvex unbounded domains: Hartogs domains \(D_\rho=\{(z,z_{n+1})\in\mathbb C^{n+1}\mid | z_{n+1}| <e^{-\rho(z)}\}\), where \(\rho:\mathbb C^n\to\mathbb R\) is a plurisubharmonic function bounded from below and such that \(\lim_{\| z\| \to\infty}\| z\| ^k e^{-\rho(z)}=0\) for all \(k>0\).
Reviewer: Marco Abate (Pisa)

MSC:

32F45 Invariant metrics and pseudodistances in several complex variables
32A07 Special domains in \({\mathbb C}^n\) (Reinhardt, Hartogs, circular, tube) (MSC2010)
32A25 Integral representations; canonical kernels (Szegő, Bergman, etc.)
32U35 Plurisubharmonic extremal functions, pluricomplex Green functions
30C85 Capacity and harmonic measure in the complex plane
Full Text: DOI

References:

[1] Diss. Math. 388 pp 1– (2000)
[2] Bull. Pol. Acad.: Math. 50 pp 297– (2002)
[3] (1995)
[4] DOI: 10.1007/s0013-003-0096-6 · Zbl 1037.30009 · doi:10.1007/s0013-003-0096-6
[5] DOI: 10.1007/BF01166457 · Zbl 0625.32011 · doi:10.1007/BF01166457
[6] Walter de Gruyter 8 (1993)
[7] Nagoya Math. J. 129 pp 43– (1993) · Zbl 0774.32016 · doi:10.1017/S0027763000004311
[8] DOI: 10.1007/PL00004754 · Zbl 0933.32048 · doi:10.1007/PL00004754
[9] DOI: 10.1090/S0002-9939-1962-0141795-0 · doi:10.1090/S0002-9939-1962-0141795-0
[10] DOI: 10.1007/s00209-004-0676-6 · Zbl 1066.32003 · doi:10.1007/s00209-004-0676-6
[11] (1991)
[12] preprint
[13] Dissertation (in Polish) (2004)
[14] Trans. Amer. Math. Soc 354 (2002)
[15] Univ. Iag. Acta Math. 38 pp 169– (2000)
[16] Nagoya Math. J. 175 pp 165– (2004) · Zbl 1061.32010 · doi:10.1017/S0027763000008941
[17] Lectures on Functions of a Complex Variable pp 349– (1955)
[18] Nagoya Math. J. 151 pp 221– (1998) · Zbl 0916.32016 · doi:10.1017/S0027763000025265
[19] DOI: 10.1090/S0002-9947-05-03738-4 · Zbl 1071.32008 · doi:10.1090/S0002-9947-05-03738-4
[20] DOI: 10.5802/afst.943 · Zbl 0963.32003 · doi:10.5802/afst.943
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.