×

Bergman kernel in complex analysis. (English) Zbl 1330.32002

Alpay, Daniel (ed.), Operator theory. With 51 figures and 2 tables. In 2 volumes. Basel: Springer (ISBN 978-3-0348-0666-4/print; 978-3-0348-0667-1/ebook; 978-3-0348-0668-8/print+ebook; 978-3-0348-0692-3/online (updated continuously)). Springer Reference, 73-86 (2015).
Summary: In this survey a brief review of results on the Bergman kernel and Bergman distance concentrating on those fields of complex analysis which remain in the focus of the research interest of the authors is presented. The topics discussed contain general discussion of \(\mathcal{L}_{\mathrm{h}}^{2}\) spaces, behavior of the Bergman distance, regularity of extension of proper holomorphic mappings, and recent development in the theory of Bergman distance stemming from the pluripotential theory and very short discussion of the Lu Qi Keng problem.
For the entire collection see [Zbl 1325.47001].

MSC:

32-02 Research exposition (monographs, survey articles) pertaining to several complex variables and analytic spaces
32A25 Integral representations; canonical kernels (Szegő, Bergman, etc.)
32A36 Bergman spaces of functions in several complex variables
32U05 Plurisubharmonic functions and generalizations

References:

[1] Bell, S.: Biholomorphic mappings and the · Zbl 0423.32009
[2] Bell, S.: Proper holomorphic mappings between circular domains. Comment. Math. Helv. 57(4), 532-538 (1982) · Zbl 0511.32013 · doi:10.1007/BF02565875
[3] Bell, S.: The Bergman kernel function and proper holomorphic mappings. Trans. Am. Math. Soc. 270(2), 685-691 (1982) · Zbl 0482.32007
[4] Bell, S., Catlin, D.: Boundary regularity of proper holomorphic mappings. Duke Math. J. 49(2), 385-396 (1982) · Zbl 0475.32011 · doi:10.1215/S0012-7094-82-04924-9
[5] Bell, S., Ligocka, E.: A simplification and extension of Fefferman’s theorem on biholomorphic mappings. Invent. Math. 57(3), 283-289 (1980) · Zbl 0411.32010 · doi:10.1007/BF01418930
[6] Bergman, S.: Zur Theorie von pseudokonformen Abbildungen. Mat. Sb. 43, 79-96 (1936) · Zbl 0014.02603
[7] Błocki, Z.: The Bergman metric and the pluricomplex Green function. Trans. Am. Math. Soc. 357(7), 2613-2625 (2005) · Zbl 1071.32008 · doi:10.1090/S0002-9947-05-03738-4
[8] Błocki, Z.: The Bergman kernel and pluripotential theory. In: Potential theory in Matsue, 1-9. Advanced Studies in Pure Mathematics, vol. 44, Mathematics Society of Japan, Tokyo (2006) · Zbl 1140.32003
[9] Błocki, Z.: Suita conjecture and the Ohsawa-Takegoshi extension theorem. Invent. Math. 193(1), 149-158 (2013) · Zbl 1282.32014 · doi:10.1007/s00222-012-0423-2
[10] Błocki, Z.: Bergman kernel and pluripotential theory. In: Proceedings of the Conference in Honor of Duong Phong. Contemporary Mathematics. American Mathematical Society (2014, to appear) · Zbl 1337.32009
[11] Błocki, Z.: Cauchy-Riemann meet Monge-Ampére. Bull. Math. Sci. 4, 433-480 (2014) · Zbl 1310.32004 · doi:10.1007/s13373-014-0058-2
[12] Błocki, Z., Pflug, P.: Hyperconvexity and Bergman completeness. Nagoya Math. J. 151, 221-225 (1998) · Zbl 0916.32016
[13] Błocki, Z., Zwonek, W.: Estimates for the Bergman kernel and the multidimensional Suita conjecture (2014, preprint) · Zbl 1317.32024
[14] Boas, H.P.: Counterexample to the Lu Qi-Keng conjecture. Proc. Am. Math. Soc. 97, 374-375 (1986) · Zbl 0596.32032
[15] Boas, H.P.: Lu Qi-Keng’s problem. J. Korean Math. Soc. 37(2), 253-267 (2000). Several complex variables (Seoul, 1998) · Zbl 0981.32004
[16] Boas, H.P., Fu, S., Straube, E.J.: The Bergman kernel function: explicit formulas and zeroes. Proc. Am. Math. Soc. 127(3), 805-811 (1999) · Zbl 0919.32013 · doi:10.1090/S0002-9939-99-04570-0
[17] Chakrabarti, D., Verma, K.: Condition R and proper holomorphic maps between equidimensional product domains. Adv. Math. 248, 820-842 (2013) · Zbl 1408.32019 · doi:10.1016/j.aim.2013.08.014
[18] Chen, B.Y.: Completeness of the Bergman metric on non-smooth pseudoconvex domains. Ann. Pol. Math. 71(3), 241-251 (1999) · Zbl 0937.32014
[19] Chen, B.Y.: A note on Bergman completeness. Int. J. Math. 12(4), 383-392 (2001) · Zbl 1111.32301 · doi:10.1142/S0129167X01000940
[20] Christ, M.: Global · Zbl 0945.32022 · doi:10.1090/S0894-0347-96-00213-5
[21] Conway, J.B.: Functions of One Complex Variable. II. Springer, New York (1995) · Zbl 0887.30003 · doi:10.1007/978-1-4612-0817-4
[22] Diederich, K., Fornaess, J.E.: Boundary regularity of proper holomorphic mappings. Invent. Math. 67(3), 363-384 (1982) · Zbl 0501.32010 · doi:10.1007/BF01398927
[23] Diederich, K., Ohsawa, T.: An estimate for the Bergman distance on pseudoconvex domains. Ann. Math. (2) 141(1), 181-190 (1995) · Zbl 0828.32002 · doi:10.2307/2118631
[24] Fefferman, C.: The Bergman kernel and biholomorphic mappings of pseudoconvex domains. Invent. Math. 26, 1-65 (1974) · Zbl 0289.32012 · doi:10.1007/BF01406845
[25] Herbig, A.-K., McNeal, J.D., Straube, E.J.: Duality of holomorphic function spaces and smoothing properties of the Bergman projection. Trans. Am. Math. Soc. 366(2), 647-665 (2014) · Zbl 1286.32003 · doi:10.1090/S0002-9947-2013-05827-8
[26] Herbort, G.: The Bergman metric on hyperconvex domains. Math. Z. 232, 183-196 (1999) · Zbl 0933.32048 · doi:10.1007/PL00004754
[27] Jarnicki, M., Pflug, P.: Extension of Holomorphic Functions. Walter de Gruyter, Berlin/New York (2000) · Zbl 0976.32007 · doi:10.1515/9783110809787
[28] Jarnicki, M., Pflug, P.: Invariant Distances and Metrics in Complex Analysis, 2nd extended edn. Walter de Gruyter, Berlin (2013) · Zbl 1273.32002 · doi:10.1515/9783110253863
[29] Josefson, B.: On the equivalence between locally polar and globally polar sets for plurisubharmonic functions on · Zbl 0383.31003 · doi:10.1007/BF02385986
[30] Jucha, P.: Bergman completeness of Zalcman type domains. Studia Math. 163(1), 71-83 (2004) · Zbl 1054.32005 · doi:10.4064/sm163-1-4
[31] Jucha, P.: A remark on the dimension of the Bergman space of some Hartogs domains. J. Geom. Anal. 22(1), 23-37 (2012) · Zbl 1258.32002 · doi:10.1007/s12220-010-9182-8
[32] Klimek, M.: Extremal plurisubharmonic functions and invariant pseudodistances. Bull. Soc. Math. Fr. 113(2), 231-240 (1985) · Zbl 0584.32037
[33] Klimek, M.: Pluripotential Theory, Clarendon Press, Oxford/New York (1991) · Zbl 0742.31001
[34] Kobayashi, S.: Geometry of bounded domains. Trans. Am. Math. Soc. 92, 267-290 (1959) · Zbl 0136.07102 · doi:10.1090/S0002-9947-1959-0112162-5
[35] Kosiński, Ł.: Geometry of quasi-circular domains and applications to tetrablock. Proc. Am. Math. Soc. 139(2), 559-569 (2011) · Zbl 1211.32012 · doi:10.1090/S0002-9939-2010-10493-8
[36] Lempert, L.: La métrique de Kobayashi et la représentation des domaines sur la boule. Bull. Soc. Math. Fr. 109, 427-474 (1981) · Zbl 0492.32025
[37] Qi-Keng, L.: On Kaehler manifolds with constant curvature. Chin. Math. Acta 8, 283-298 (1966)
[38] Ohsawa, T.: Addendum to ”On the Bergman kernel of hyperconvex domains”. Nagoya Math. J. 137, 145-148 (1995) · Zbl 0817.32013
[39] Ohsawa, T., Takegoshi, K.: On the extension of · Zbl 0625.32011 · doi:10.1007/BF01166457
[40] Pflug, P., Zwonek, W.: \(L\)_{\(h\)}^{2}-domains of holomorphy and the Bergman kernel. Studia Math. 151(2), 99-108 (2002) · Zbl 1013.32002 · doi:10.4064/sm151-2-1
[41] Pflug, P., Zwonek, W.: Logarithmic capacity and Bergman functions. Arch. Math. 80, 536-552 (2003) · Zbl 1037.30009 · doi:10.1007/s0013-003-0096-6
[42] Ransford, T.: Potential Theory in the Complex Plane. London Mathematical Society Student Texts, vol. 28. Cambridge University Press, Cambridge (1995) · Zbl 0828.31001 · doi:10.1017/CBO9780511623776
[43] Rosenthal, P.: On the zeros of the Bergman function in double-connected domains. Proc. Am. Math. Soc. 21, 33-35 (1969) · Zbl 0172.10103 · doi:10.1090/S0002-9939-1969-0239066-3
[44] Skwarczyński, M.: Biholomorphic invariants related to the Bergman function. Diss. Math. 173, 1-59 (1980)
[45] Suita, N.: Capacities and kernels on Riemann surfaces. Arch. Ration. Mech. Anal. 46, 212-217 (1972) · Zbl 0245.30014 · doi:10.1007/BF00252460
[46] Suita, N., Yamada, A.: On the Lu Qi-Keng conjecture. Proc. Am. Math. Soc. 59, 222-224 (1976) · Zbl 0319.30013 · doi:10.1090/S0002-9939-1976-0425185-9
[47] Szafraniec, F.H.: The reproducing kernel property and its space: the basics. In: Alpay, D. (ed.) Operator Theory, chapter 1, pp. 3-30, Springer, Basel (2015). doi: 10.1007/978-3-0348-0692-3_65 · Zbl 1342.46026 · doi:10.1007/978-3-0348-0667-1_65
[48] Wiegerinck, J.: Domains with finite dimensional Bergman space. Math. Z. 187, 559-562 (1984) · Zbl 0534.32001 · doi:10.1007/BF01174190
[49] Zwonek, W.: Regularity properties of the Azukawa metric. J. Math. Soc. Jpn. 52(4), 899-914 (2000) · Zbl 0986.32016 · doi:10.2969/jmsj/05240899
[50] Zwonek, W.: An example concerning Bergman completeness. Nagoya Math. J. 164, 89-101 (2001) · Zbl 1038.32014
[51] Zwonek, W.: Wiener’s type criterion for Bergman exhaustiveness. Bull. Pol. Acad. Sci. Math. 50(3), 297-311 (2002) · Zbl 1016.32004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.