×

Diophantine equations in primes: density of prime points on affine hypersurfaces. (English) Zbl 1504.11057

Let \(F \in \mathbb{F}[x_1, \dots, x_n]\) be a homogeneous form of degree \(d \ge 2\). The author is concerned with the existence of points with prime coordinates on the variety \(V(F)=\{z \in \mathbb{C}^n : F(z) = 0\}\). It is shown that under suitable assumptions, infinitely many such points exist.
More precisely, suppose that no local obstructions exist, i.e., \(F(x) = 0\) has nonsingular solutions in \((0,1)^n\) as well as in \((\mathbb{Z}_p^\times)^n\) for all primes \(p\). Let \(V^*_F\) denote the singular locus of \(V(F)\), i.e., the affine variety \[ V_F^* = \{z \in \mathbb{C}^n : \nabla F(z) = 0\}, \] and suppose that \[ n-\dim V_F^* \ge 2^83^45^2d^3(2d-1)^2 4^d. \] Finally, let \(\Lambda^*(x) = \log p\) if \(x=p\) is a prime and \(\Lambda^*(x) = 0\) otherwise, and define the counting function \[ N_\mathcal{P}(F;X) = \sum_{x \in [0,X]^n} \Lambda^*(x_1) \cdots \Lambda^*(x_n) 1\!\!1_{V(F)}(x). \] Then, \(N_\mathcal{P}(F;X) \gg X^{n-d}.\)
The result improves dramatically upon a previous result of B. Cook and Á. Magyar [Invent. Math. 198, No. 3, 701–737 (2014; Zbl 1360.11063)], which in addition to the local conditions required that \(n - \dim V_F^* > \mathfrak{C}_d\), where \[ \mathfrak{C}_d > (t_{d-1}2^{5d}d! - 1)(d-1)^{t_{d-1}2^{5d}d!-1}, \] with \(t_j\) defined recursively by \(t_1 = 1\) and \(t_{j+1} = d^{t_j}\).

MSC:

11D45 Counting solutions of Diophantine equations
11D72 Diophantine equations in many variables
11P32 Goldbach-type theorems; other additive questions involving primes
11P55 Applications of the Hardy-Littlewood method

References:

[1] B. J. BIRCH, Forms in many variables, Proc. Roy. Soc. Ser. A 265 (1961/1962), 245-263. · Zbl 0103.03102 · doi:10.1098/rspa.1962.0007
[2] T. D. BROWNING, Quantitative Arithmetic of Projective Varieties, Progr. Math. 277, Birkhäuser, Basel, 2009. · Zbl 1188.14001 · doi:10.1007/978-3-0346-0129-0
[3] T. D. BROWNING and S. M. PRENDIVILLE, Improvements in Birch’s theorem on forms in many variables, J. Reine Angew. Math. 731 (2017), 203-234. · Zbl 1409.11081 · doi:10.1515/crelle-2014-0122
[4] B. COOK and Á. MAGYAR, Diophantine equations in the primes, Invent. Math. 198 (2014), no. 3, 701-737. · Zbl 1360.11063 · doi:10.1007/s00222-014-0508-1
[5] H. DAVENPORT, Analytic methods for Diophantine equations and Diopantine inequalities, 2nd ed., Cambridge Univ. Press, Cambridge, 2005. · Zbl 1125.11018 · doi:10.1017/CBO9780511542893
[6] H. DAVENPORT, Multiplicative number theory, 3rd ed., Springer, New York, 2000. · Zbl 1002.11001
[7] P. X. GALLAGHER, A large sieve density estimate near \[ \sigma =1\], Invent. Math. 11 (1970), 329-339. · Zbl 0219.10048 · doi:10.1007/BF01403187
[8] K. FORD, “Zero-free regions for the Riemann zeta function” in Number theory for the millennium, II (Urbana, IL, 2000), A K Peters, Natick, 2002, 25-56. · Zbl 1034.11045
[9] B. GREEN and T. TAO, The primes contain arbitrarily long arithmetic progressions, Ann. of Math. (2) 167 (2008), no. 2, 481-547. · Zbl 1191.11025 · doi:10.4007/annals.2008.167.481
[10] B. GREEN and T. TAO, Linear equations in primes, Ann. of Math. (2) 171 (2010), no. 3, 1753-1850. · Zbl 1242.11071 · doi:10.4007/annals.2010.171.1753
[11] B. GREEN and T. TAO, The Möbius function is asymptotically orthogonal to nilsequences, Ann. of Math. (2) 175 (2012), 541-566. · Zbl 1347.37019 · doi:10.4007/annals.2012.175.2.3
[12] B. GREEN, T. TAO, and T. ZIEGLER, An inverse theorem for the Gowers \[{U^{s+1}}[N] -norm \], Ann. of Math. (2) 176 (2012), no. 2, 1231-1372. · Zbl 1282.11007 · doi:10.4007/annals.2012.176.2.11
[13] D. R. HEATH-BROWN, A new form of the circle method, and its application to quadratic forms, J. reine angew. Math. 481 (1996), 149-206. · Zbl 0857.11049 · doi:10.1515/crll.1996.481.149
[14] H. A. HELFGOTT, The ternary Goldbach problem, to appear in Ann. Math. Stud.
[15] M. N. HUXLEY, Large values of Dirichlet polynomials, III, Acta Arith. 26 (1974/75), no. 4, 435-444. · Zbl 0268.10026 · doi:10.4064/aa-26-4-435-444
[16] H. IWANIEC, On zeros of Dirichlet’s L series, Invent. Math. 23 (1974), 97-104. · Zbl 0275.10024 · doi:10.1007/BF01405163
[17] M. JUTILA, On Linnik’s constant, Math. Scand. 41 (1977), no. 1, 45-62. · Zbl 0363.10026 · doi:10.7146/math.scand.a-11701
[18] J. LIU, Integral points on quadrics with prime coordinates, Monatsh. Math. 164 (2011), no.4, 439-465. · Zbl 1292.11073 · doi:10.1007/s00605-010-0253-5
[19] J. LIU, On Lagrange’s theorem with prime variables, Q. J. Math. 54 (2003), no. 4, 453-462. · Zbl 1080.11071 · doi:10.1093/qjmath/54.4.453
[20] J. MAYNARD, Small gaps between primes, Ann. of Math. (2) 181 (2015), no. 1, 383-413. · Zbl 1306.11073 · doi:10.4007/annals.2015.181.1.7
[21] H. L. MONTGOMERY and R. C. VAUGHAN, The exceptional set in Goldbach’s problem, Acta Arith. 27 (1975), 353-370. · Zbl 0301.10043 · doi:10.4064/aa-27-1-353-370
[22] X. M. REN, The major arcs in the ternary Goldbach problem, Acta Math. Hungar. 98 (2003), nos. 1-2, 39-58. · Zbl 1026.11076 · doi:10.1023/A:1022801220384
[23] D. SCHINDLER, Bihomogeneous forms in many variables, J. Théorie Nombres Bordeaux 26 (2014), 483-506. · Zbl 1425.11055
[24] D. SCHINDLER and E. SOFOS, Sarnak’s saturation problem for complete intersections, Mathematika 65 (2019), no. 1, 1-56. · Zbl 1454.11064 · doi:10.1112/s002557931800030x
[25] W. M. SCHMIDT, The density of integer points on homogeneous varieties, Acta Math. 154 (1985), nos. 3-4, 243-296. · Zbl 0561.10010 · doi:10.1007/BF02392473
[26] I. M. VINOGRADOV. Representation of an odd number as a sum of three primes, Dokl. Akad. Nauk. SSSR 15 (1937), 291-294. · JFM 63.0131.04
[27] S. Y. XIAO and S. YAMAGISHI, Zeroes of polynomials with prime inputs and Schmidt’s h-invariant, Canadian J. Math. 72 (2020), 805-833. · Zbl 1489.11054 · doi:10.4153/s0008414x19000026
[28] S. YAMAGISHI, Prime solutions to polynomial equations in many variables and differing degrees, Forum Math. Sigma 6 (2018), art. no. e19, 89 pp. · Zbl 1454.11181 · doi:10.1017/fms.2018.21
[29] S. YAMAGISHI, Diophantine equations in semiprimes, Discrete Anal. 2019, art. no. 17, 21 pp. · Zbl 1442.11058 · doi:10.19086/da
[30] S. YAMAGISHI, On an oscillatory integral involving a homogeneous form, Funct. Approx. Comment. Math. 62 (2020), 21-58. · Zbl 1444.42018 · doi:10.7169/facm/1775
[31] Y. ZHANG, Bounded gaps between primes, Ann. of Math. (2) 179 (2014), no. 3, 1121-1174. · Zbl 1290.11128 · doi:10.4007/annals.2014.179.3.7
[32] L. ZHAO, The quadratic form in nine prime variables, Nagoya Math. J. 223 (2016), no. 1, 21-65. · Zbl 1353.11101 · doi:10.1017/nmj.2016.23
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.