×

The limit as \(p \rightarrow \infty\) for the \(p\)-Laplacian with mixed boundary conditions and the mass transport problem through a given window. (English) Zbl 1186.35078

The authors study as \(p\rightarrow \infty\), in a convex smooth domain \(\Omega\), the boundary problem involving a \(p\)-Laplacian \(-\text{div}(|Du|^{p-2}Du)=f\), where supp\((f)\subset \Omega\) and with the mixed boundary conditions \(u=0\) on \(\Gamma\) and \(|Du|^{p-2}\frac{\partial u}{\partial v}=0\) on \(\Omega \backslash \Gamma \). \(\Gamma \) is a smooth submanifold of \(\partial \Omega\) (the window) satisfying some further conditions. The limit problem as \(p\rightarrow \infty\) is considered in variational formulation, next in the weak formulation and finally in the viscosity sense.
The authors connect the problem under consideration to the optimal mass transport problem. Namely, the most efficient way of transport \(f(x)dx\) to the window \(\Gamma\) with linear cost is determined.

MSC:

35J62 Quasilinear elliptic equations
35J50 Variational methods for elliptic systems
35J25 Boundary value problems for second-order elliptic equations
35J92 Quasilinear elliptic equations with \(p\)-Laplacian
35J20 Variational methods for second-order elliptic equations
Full Text: DOI

References:

[1] L. Ambrosio, Lecture Notes on Optimal Transport Problems, CVGMT preprint server. · Zbl 1047.35001
[2] G. Aronsson - M. G. Crandall - P. Juutinen, A tour of the theory of absolutely minimizing functions. Bull. Amer. Math. Soc., 41 (2004), 439-505. · Zbl 1150.35047 · doi:10.1090/S0273-0979-04-01035-3
[3] G. Barles, Fully nonlinear Neumann type conditions for second-order elliptic and para- bolic equations. J. Di\?erential Equations, 106 (1993), 90-106. · Zbl 0786.35051 · doi:10.1006/jdeq.1993.1100
[4] T. Bhattacharya - E. Di Benedetto - J. Manfredi, Limits as p ! l of Dpup \frac{1}{4} f and related extremal problems. Rend. Sem. Mat. Univ. Politec. Torino, (1991), 15-68.
[5] G. Bouchitte - G. Buttazzo - L. De Pasquale, A p-laplacian approximation for some mass optimization problems. J. Opt Theory Appl., 118(1) (2003), 1-25. · Zbl 1040.49040 · doi:10.1023/A:1024751022715
[6] F. Charro - J. Gacia-Azorero - J. D. Rossi, A mixed problem for the infinity lap- lacian via Tug-of-War games. Calculus of Variations and PDE, 34(3) (2009), 307-320. · Zbl 1173.35459 · doi:10.1007/s00526-008-0185-2
[7] M. G. Crandall - H. Ishii - P. L. Lions, User’s guide to viscosity solutions of second order partial di\?erential equations. Bull. Amer. Math. Soc., 27 (1992), 1-67. j. g arc ia-azo rer o et a l. · Zbl 0755.35015 · doi:10.1090/S0273-0979-1992-00266-5
[8] L. C. Evans, Partial Di\?erential Equations. Grad. Stud. Math. 19, Amer. Math. Soc., 1998. · Zbl 0902.35002
[9] L. C. Evans - W. Gangbo, Di\?erential equations methods for the Monge-Kantorovich mass transfer problem. Mem. Amer. Math. Soc., 137 (1999), no. 653. · Zbl 0920.49004
[10] J. Garciá-Azorero - J. J. Manfredi - I. Peral - J. D. Rossi, The Neumann prob- lem for the l-Laplacian and the Monge-Kantorovich mass transfer problem. Nonlinear Analysis TMA., 66(2), (2007), 349-366. · Zbl 1387.35286
[11] J. Garciá-Azorero - J. J. Manfredi - I. Peral - J. D. Rossi, Steklov eigenvalues for the l-Laplacian. Rend. Lincei Mat. Appl., 17(3) (2006), 199-210. · Zbl 1114.35072 · doi:10.4171/RLM/463
[12] J. Garciá-Azorero - J. J. Manfredi - I. Peral - J. D. Rossi, Limits for Monge- Kantorovich mass transport problems. Comm. in Pure App. Analysis, 7(4) (2008), 853-865. · Zbl 1159.35029 · doi:10.3934/cpaa.2008.7.853
[13] H. Ishii - P. Loreti, Limits os solutions of p-Laplace equations as p goes to infinity and related variational problems. SIAM J. Math. Anal. 37(2) (2006), 411-437. · Zbl 1134.35307 · doi:10.1137/S0036141004432827
[14] R. Jensen, Uniqueness of Lipschitz extensions: minimizing the sup norm of the gradient. Arch. Rational Mech. Anal. 123 (1993), 51-74. · Zbl 0789.35008 · doi:10.1007/BF00386368
[15] P. Juutinen - P. Lindqvist - J. J. Manfredi, The l-eigenvalue problem. Arch. Rational Mech. Anal., 148 (1999), 89-105. · Zbl 0947.35104 · doi:10.1007/s002050050157
[16] Y. Peres - O. Schramm - S. Sheffield - D. B. Wilson, Tug-of-war and the infinity Laplacian, to appear in J. Amer. Math. Soc. (Preprint available at http://arxiv.org/ archive/math) · Zbl 1206.91002 · doi:10.1090/S0894-0347-08-00606-1
[17] E. Shamir, Regularization of Second-Order Elliptic Problems. Israel J. Math. 6, (1968), 150-168. · Zbl 0157.18202 · doi:10.1007/BF02760180
[18] C. Villani, Topics in Optimal Transportation. Amer. Math. Soc. Graduate Studies in Mathematics, vol. 58, 2003. · Zbl 1106.90001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.