×

A \(hk\) mortar spectral element method for the \(p\)-Laplacian equation. (English) Zbl 1434.65298

Summary: We present a constrained-vertex variant of the mortar spectral element method to solve the \(p\)-Laplacian equation. To show reliability of the method, first we investigate convergence rate of \(h\)-version and \(k\)-version for a sufficiently smooth solution. Then for solutions with limited regularity, we use a \(hk\)-strategy in which the size of elements is geometrically reduced towards the singularity while the polynomial degree is linearly reduced. In fact, we numerically study convergence rate of the \(hk\) mortar spectral element method in the \(L^2\)-norm and \(H^1\)-norm using geometrical meshes with elements of non-uniform polynomial degree. In this regard, we consider several benchmarks with various choices of the parameter \(p\) as well as geometric grading factors. To deal with possible degeneracy in the \(p\)-Laplacian operator, we add artificial diffusion to the original equation and then study the effects of this extra diffusion on convergence rate. To find the solution of highly nonlinear system arising from discretization we use an optimization technique based on the trust region method in which an analytical Jacobian matrix is utilized.

MSC:

65N35 Spectral, collocation and related methods for boundary value problems involving PDEs
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
35J92 Quasilinear elliptic equations with \(p\)-Laplacian
35J25 Boundary value problems for second-order elliptic equations
35J70 Degenerate elliptic equations
35J60 Nonlinear elliptic equations
Full Text: DOI

References:

[1] Kawohl, B., On a family of torsional creep problems, J. R. Angew. Math., 410, 1-22 (1990) · Zbl 0701.35015
[2] Peres, Y.; Sheffield, S., Tug-of-war with noise: A game-theoretic view of the \(p\)-Laplacian, Duke Math. J., 145, 91-120 (2008) · Zbl 1206.35112
[3] Bouchitté, G.; Buttazzo, G.; Pascale, L. D., A \(p\)-Laplacian approximation for some mass optimization problems, J. Optim. Theory Appl., 118, 1-25 (2003) · Zbl 1040.49040
[4] Barrett, J.; Prigozhin, L., Bean’s critical-state model as the \(p \to \infty\) limit of an evolutionary \(p\)-Laplacian equation, Nonlinear Anal. TMA, 42, 977-993 (2000) · Zbl 1170.82436
[5] Díaz, J.; Hernández, J.; Tello, L., On the multiplicity of equilibrium solutions to a nonlinear diffusion equation on a manifold arising in climatology, J. Math. Anal. Appl., 216, 593-613 (1997) · Zbl 0892.35065
[6] Liu, W., Degenerate quasilinear elliptic equations arising from bimaterial problems in elastic-plastic mechanics, Nonlinear Anal. TMA, 35, 517-529 (1999) · Zbl 0965.35075
[7] Zhang, H.-Y.; Peng, Q.-C.; Wu, Y.-D., Wavelet inpainting based on \(p\)-Laplace operator, Acta Autom. Sin., 33, 546-549 (2007)
[8] Liu, Q.; Li, X.; Gao, T., A nondivergence \(p\)-Laplace equation in a removing multiplicative noise model, Nonlinear Anal. RWA, 14, 2046-2058 (2013) · Zbl 1304.35769
[9] Bird, R.; Armstrong, R.; Hassager, O., Dynamics of Polymeric Liquids (1987), Wiley
[10] Málek, J.; Rajagopal, K. R.; Růžička, M., Existence and regularity of solutions and the stability of the rest state for fluids with shear dependent viscosity, Math. Models Methods Appl. Sci., 5, 789-812 (1995) · Zbl 0838.76005
[11] Hirn, A., Approximation of the \(p\)-Stokes equations with equal-order finite elements, J. Math. Fluid Mech., 15, 65-88 (2013) · Zbl 1430.76365
[12] Růžička, M., (Electrorheological Fluids: Modeling and Mathematical Theory. Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Mathematics (2000), Springer-Verlag Berlin Heidelberg) · Zbl 0968.76531
[13] Showalter, R. E.; Walkington, N. J., Diffusion of fluid in a fissured medium with microstructure, SIAM J. Math. Anal., 22, 1702-1722 (1991) · Zbl 0764.35053
[14] Liu, W.; Barrett, J., A remark on the regularity of the solutions of the \(p\)-Laplacian and its application to their finite element approximation, J. Math. Anal. Appl., 178, 470-487 (1993) · Zbl 0799.35085
[15] Dahlke, S.; Diening, L.; Hartmann, C.; Scharf, B.; Weimar, M., Besov regularity of solutions to the \(p\)-Poisson equation, Nonlinear Anal. TMA, 130, 298-329 (2016) · Zbl 1330.35189
[16] Wu, Z.; Zhao, J.; Yin, J.; Li, H., Nonlinear Diffusion Equations (2001), World Scientific · Zbl 0997.35001
[17] Glowinski, R.; Marroco, A., Sur l’approximation, par éléments finis d’ordre un, et la résolution, par pénalisation-dualité, d’une classe de problèmes de Dirichlet non lineaires, RAIRO Anal. Numér., 9, 41-76 (1975) · Zbl 0368.65053
[18] Chow, S.-S., Finite element error estimates for non-linear elliptic equations of monotone type, Numer. Math., 54, 373-393 (1989) · Zbl 0643.65058
[19] Barrett, J.; Liu, W., Finite element approximation of the \(p\)-Laplacian, Math. Comp., 61, 523-537 (1993) · Zbl 0791.65084
[20] Ainsworth, M.; Kay, D., The approximation theory for the \(p\)-version finite element method and application to non-linear elliptic PDEs, Numer. Math., 82, 351-388 (1999) · Zbl 0938.65122
[21] Ainsworth, M.; Kay, D., Approximation theory for the \(h p\)-version finite element method and application to the non-linear Laplacian, Appl. Numer. Math., 34, 329-344 (2000) · Zbl 0972.65091
[22] Babuška, I.; Szabo, B. A.; Katz, I. N., The \(p\)-version of the finite element method, SIAM J. Numer. Anal., 18, 512-545 (1981) · Zbl 0487.65059
[23] Babuška, I.; Suri, M., Optimal convergence rate of the \(p\)-version of the finite element method, SIAM J. Numer. Anal., 24, 750-776 (1987) · Zbl 0637.65103
[24] Babuška, I.; Suri, M., The \(h - p\) version of the finite element method with quasiuniform meshes, Math. Modell. Numer. Anal., 21, 199-238 (1987) · Zbl 0623.65113
[25] Diening, L.; Růžička, M., Interpolation operators in Orlicz-Sobolev spaces, Numer. Math., 107, 107-129 (2007) · Zbl 1131.46023
[26] Mirzaei, D.; Dehghan, M., MLPG approximation to the \(p\)-Laplace problem, Comput. Mech., 46, 6, 805-812 (2010) · Zbl 1200.65094
[27] Farhloul, M., A mixed finite element method for a nonlinear Dirichlet problem, IMA J. Numer. Anal., 18, 121-132 (1998) · Zbl 0909.65086
[28] Creuse, E.; Farhloul, M.; Paquet, L., A posteriori error estimation for the dual mixed finite element method for the \(p\)-Laplacian in a polygonal domain, Comput. Methods Appl. Mech. Engrg., 196, 2570-2582 (2007) · Zbl 1173.65345
[29] Burman, E.; Ern, A., Discontinuous Galerkin approximation with discrete variational principle for the nonlinear Laplacian, C. R. Math., 346, 1013-1016 (2008) · Zbl 1152.65073
[30] Cockburn, B.; Shen, J., A hybridizable discontinuous Galerkin method for the \(p\)-Laplacian, SIAM J. Sci. Comput., 38, A545-A566 (2016) · Zbl 1382.65383
[31] Belenki, L.; Diening, L.; Kreuzer, C., Optimality of an adaptive finite element method for the \(p\)-Laplacian equation, IMA J. Numer. Anal., 32, 484-510 (2012) · Zbl 1245.65156
[32] Liu, W.; Yan, N., Quasi-norm local error estimators for \(p\)-Laplacian, SIAM J. Numer. Anal., 39, 100-127 (2001) · Zbl 1001.65119
[33] Carstensen, C.; Liu, W.; Yan, N., A posteriori FE error control for \(p\)-Laplacian by gradient recovery in quasi-norm, Math. Comp., 75, 1599-1616 (2006) · Zbl 1121.65111
[34] P. Lindqvist, Notes on the \(p\); P. Lindqvist, Notes on the \(p\) · Zbl 1256.35017
[35] Brezis, H.; Sibony, M., Méthodes d’approximation et d’itération pour les opérateurs monotones, Arch. Ration. Mech. Anal., 28, 59-82 (1968) · Zbl 0157.22501
[36] Wei, D., Finite element approximations of solutions to \(p\)-harmonic equation with dirichlet data, Numer. Funct. Anal. Optim., 10, 1235-1251 (1989) · Zbl 0711.65093
[37] Huang, Y.; Li, R.; Liu, W., Preconditioned descent algorithms for \(p\)-Laplacian, J. Sci. Comput., 32, 343-371 (2007) · Zbl 1134.65079
[38] Zhou, G.; Huang, Y.; Feng, C., Preconditioned hybrid conjugate gradient algorithm for \(p\)-Laplacian, Int. J. Numer. Anal. Model., 2, 123-130 (2005)
[39] Zhou, G.; Feng, C., The steepest descent algorithm without line search for \(p\)-Laplacian, Appl. Math. Comput., 224, 36-45 (2013) · Zbl 1337.65163
[40] Patera, A., A spectral element method for fluid dynamics: Laminar flow in a channel expansion, J. Comput. Phys., 54, 468-488 (1984) · Zbl 0535.76035
[41] Kopriva, D. A., Implementing Spectral Methods for Partial Differential Equations (2009), Springer · Zbl 1172.65001
[42] Dehghan, M.; Abbaszadeh, M., A Legendre spectral element method (SEM) based on the modified bases for solving neutral delay distributed-order fractional damped diffusion-wave equation, Math. Methods Appl. Sci., 41, 3227-3250 (2018)
[43] Dehghan, M.; Abbaszadeh, M., Spectral element technique for nonlinear fractional evolution equation, stability and convergence analysis, Appl. Numer. Math., 119, 51-66 (2017) · Zbl 1368.65261
[44] Dehghan, M.; Sabouri, M., A spectral element method for solving the Pennes bioheat transfer equation by using triangular and quadrilateral elements, Appl. Math. Model., 36, 12, 6031-6049 (2012) · Zbl 1349.74320
[45] Fakhar-Izadi, F.; Dehghan, M., A spectral element method using the modal basis and its application in solving second-order nonlinear partial differential equations, Math. Methods Appl. Sci., 38, 478-504 (2015) · Zbl 1307.65138
[46] Fakhar-Izadi, F.; Dehghan, M., Modal spectral element method in curvilinear domains, Appl. Numer. Math., 128, 157-182 (2018) · Zbl 1393.65034
[47] Dutt, P.; Husain, A.; Vasudeva Murthy, A.; Upadhyay, C., \(h-p\) spectral element methods for three dimensional elliptic problems on non-smooth domains, Appl. Math. Comput., 234, 13-35 (2014) · Zbl 1298.65180
[48] Dutt, P.; Husain, A.; Vasudeva Murthy, A.; Upadhyay, C., \(h-p\) spectral element methods for three dimensional elliptic problems on non-smooth domains, Part-III: Error estimates, preconditioners, computational techniques and numerical results, Comput. Math. Appl., 71, 1745-1771 (2016) · Zbl 1443.65388
[49] Mavriplis, C. A., Nonconforming Discretizations and a Posteriori Error Estimators for Adaptive Spectral Element Techniques (1989), Massachusetts Institute of Technology, (Ph.D. thesis)
[50] Antonietti, P.; Mazzieri, I.; Quarteroni, A.; Rapetti, F., Non-conforming high order approximations of the elastodynamics equation, Comput. Methods Appl. Mech. Eng., 209-212, 212-238 (2012) · Zbl 1243.74010
[51] Aouadi, S.; Bernardi, C.; Satouri, J., Mortar spectral element discretization of the Stokes problem in axisymmetric domains, Numer. Methods Partial Differential Equations, 30, 44-73 (2014) · Zbl 1299.76049
[52] Boulmezaoud, T.; Rhabi, M. E., A mortar spectral element method for 3D Maxwell’s equations, IMA J. Numer. Anal., 25, 577-610 (2005) · Zbl 1083.78017
[53] Chorfi, N., Handling geometric singularities by the mortar spectral element method I. Case of the Laplace equation, J. Sci. Comput., 18, 25-48 (2003) · Zbl 1027.65158
[54] Belhachmi, Z.; Bernardi, C.; Karageorghis, A., Mortar spectral element discretization of the Laplace and Darcy equations with discontinuous coefficients, Math. Modell. Numer. Anal., 41, 801-824 (2007) · Zbl 1145.65094
[55] Barosan, I.; Anderson, P.; Meijer, H., Application of mortar elements to diffuse-interface methods, Comput. & Fluids, 35, 1384-1399 (2006) · Zbl 1177.76190
[56] Kopriva, D.; Woodruff, S.; Hussaini, M., Computation of electromagnetic scattering with a non-conforming discontinuous spectral element method, Internat. J. Numer. Methods Engrg., 53, 105-122 (2002) · Zbl 0994.78020
[57] Seshaiyer, P.; Suri, M., Uniform hp convergence results for the mortar finite element method, Math. Comp., 69, 521-546 (2000) · Zbl 0944.65113
[58] Ben Belgacem, F.; Seshaiyer, P.; Suri, M., Optimal convergence rates of \(h p\) mortar finite element methods for second-order elliptic problems, Math. Modell. Numer. Anal., 34, 591-608 (2000) · Zbl 0956.65106
[59] Canuto, C.; Hussaini, M. Y.; Quarteroni, A.; Zang, T. A., Spectral Methods Evolution To Complex Geometries and Applications To Fluid Dynamics (2007), Springer-Verlag Berlin Heidelberg · Zbl 1121.76001
[60] Deville, M. O.; Fischer, P. F.; Mund, E. H., (High-Order Methods for Incompressible Fluid Flow. High-Order Methods for Incompressible Fluid Flow, Cambridge Monographs on Applied and Computational Mathematics (2004), Cambridge University Press) · Zbl 1007.76001
[61] Sabouri, M.; Dehghan, M., An efficient implicit spectral element method for time-dependent nonlinear diffusion equations by evaluating integrals at one quadrature point, Comput. Math. Appl., 70, 2513-2541 (2015) · Zbl 1443.65252
[62] E. Brivadis, A. Buffa, B. Wohlmuth, L. Wunderlich, The influence of quadrature errors on isogeometric mortar methods, in: B. Jüttler, B. Simeon, Isogeometric Analysis and Applications 2014, vol. 107, 2015, pp. 33-50.; E. Brivadis, A. Buffa, B. Wohlmuth, L. Wunderlich, The influence of quadrature errors on isogeometric mortar methods, in: B. Jüttler, B. Simeon, Isogeometric Analysis and Applications 2014, vol. 107, 2015, pp. 33-50. · Zbl 1334.65195
[63] Y.X. Yuan, A review of trust region algorithms for optimization, in: Proceedings of the Fourth International Congress on Industrial and Applied Mathematics, 2000, pp. 271-282.; Y.X. Yuan, A review of trust region algorithms for optimization, in: Proceedings of the Fourth International Congress on Industrial and Applied Mathematics, 2000, pp. 271-282. · Zbl 0992.65061
[64] Bertolazzi, E., Trust Region Method Lectures for PHD Course on Numerical Optimization (2011), Universitá di Trento
[65] Nocedal, J.; Wright, S. J., Numerical Optimization (1999), Springer Series in Operations Research · Zbl 0930.65067
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.