×

Image segmentation using some piecewise constant level set methods with MBO type of projection. (English) Zbl 1477.68521

Summary: We are trying to propose fast algorithms for Mumford-Shah image segmentation using some recently proposed piecewise constant level set methods (PCLSM). Two variants of the PCLSM will be considered in this work. The first variant, which we call the binary level set method, needs a level set function which only takes values \(\pm 1\) to identify the regions. The second variant only needs to use one piecewise constant level set function to identify arbitrary number of regions. For the Mumford-Shah image segmentation model with these new level set methods, one needs to minimize some smooth energy functionals under some constrains. A penalty method will be used to deal with the constraint. AOS (additive operator splitting) and MOS (multiplicative operator splitting) schemes will be used to solve the Euler-Lagrange equations for the minimization problems. By doing this, we obtain some algorithms which are essentially applying the MBO scheme for our segmentation models. Advantages and disadvantages are discussed for the proposed schemes.

MSC:

68U10 Computing methodologies for image processing
94A08 Image processing (compression, reconstruction, etc.) in information and communication theory

References:

[1] Ambrosio, L. and Tortorelli, V. M. 1990. Approximation of fun-ctionals depending on jumps by elliptic functionals via {\(\Gamma\)}-conver-gence. Comm. Pure Appl. Math., 43(8):999–1036. · Zbl 0722.49020 · doi:10.1002/cpa.3160430805
[2] Aubert, G. and Kornprobst, P. 2002. Mathematical problems in image processing, volume 147 of Applied Mathematical Sciences. Springer-Verlag, New York. Partial differential equations and the calculus of variations, With a foreword by Olivier Faugeras. · Zbl 1109.35002
[3] Barash, D., Schlick, T., Israeli, M., and Kimmel, R. 2003. Multiplicative operator splittings in nonlinear diffusion: from spatial splitting to multiple timesteps. J. Math. Imaging Vision, 19(1):33–48. · Zbl 1040.68129 · doi:10.1023/A:1024484920022
[4] Barash, D. 2005. Nonlinear diffusion filtering on extended neighborhood. Appl. Numer. Math., 52(1):1–11. · Zbl 1061.94508 · doi:10.1016/j.apnum.2004.07.002
[5] Chan, T.F. and Tai, X.-C. 2003. Level set and total variation regularization for elliptic inverse problems with discontinuous coefficients. J. Comput. Physics, 193:40–66. · Zbl 1036.65086 · doi:10.1016/j.jcp.2003.08.003
[6] Chan, T. and Vese, L.A. 2001. Active contours without edges. IEEE Image Proc., 10(2):266–277. · Zbl 1039.68779 · doi:10.1109/83.902291
[7] Cremers, D., Kohlberger, T., and Schnörr, C. 2003. Shape statistics in kernel space for variational image segmentation. Pattern Recognition, 36:1929–1943. · Zbl 1035.68125 · doi:10.1016/S0031-3203(03)00056-6
[8] Cremers, D., Sochen, N., and Schnörr, C. 2004. Multiphase dynamic labeling for variational recognition-driven image segmentation. In ECCV 2004, LNCS 3024, pages 74–86. · Zbl 1098.68746
[9] Du, Q., Liu, C., and Wang, X. 2004. A phase field approach in the numerical study of the elastic bending energy for vesicle membranes. J. Comput. Phys., 198(2):450–468. · Zbl 1116.74384 · doi:10.1016/j.jcp.2004.01.029
[10] Esedoglu, S. and Tsai, Y.-H.R. 2004. Threshold dynamics for the piecewise constant mumford-shah functional. Tech. Rep. CAM04-63, UCLA Dep. Math.
[11] Evans, L.C., Soner, H.M., and Souganidis, P.E. 1992. Phase transitions and generalized motion by mean curvature. Comm. Pure Appl. Math., 45(9):1097–1123. · Zbl 0801.35045 · doi:10.1002/cpa.3160450903
[12] Gibou, F. and Fedkiw, R. 2002. A fast hybrid k-means level set algorithm for segmentation. Stanford Technical Report, November 2002, (in review)..
[13] Glowinski, R., Lin, P., and Pan, X. 2003. An operator-splitting method for a liquid crystal model. Comput. Physics Comm., 152:242–252. · doi:10.1016/S0010-4655(02)00823-8
[14] Lie, J., Lysaker, M., and Tai, X.-C. 2003. A variant of the levelset method and applications to image segmentation. UCLA CAM03-50.
[15] Lie, J., Lysaker, M., and Tai, X.-C. 2004. A binary level set model and some applications to image processing. UCLA CAM 04- 31. · Zbl 1286.94018
[16] Lie, J., Lysaker, M., and Tai, X.-C. 2005. Piecewise constant level set methods and image segmentation. In Scale Space and PDE Methods in Computer Vision, Lectures notes in Computer Sciences 3459, pages 573–584. Springer. · Zbl 1119.68489
[17] Lions, P.-L. and Mercier, B. 1979. Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal., 16(6):964–979. · Zbl 0426.65050 · doi:10.1137/0716071
[18] Lu, T., Neittaanmaki, P., and Tai, X-C. 1991. A parallel splitting up method and its application to navier-stoke equations. Applied Mathematics Letters, 4:25–29. · Zbl 0718.65066 · doi:10.1016/0893-9659(91)90161-N
[19] Lu, T., Neittaanmaki, P., and Tai, X-C. 1992. A parallel splitting up method for partial differential equations and its application to navier-stokes equations. RAIRO Math. Model. and Numer. Anal., 26:673–708. · Zbl 0756.65129
[20] Marchuk, G.I. 1990. Splitting and alternating direction methods. In Handbook of numerical analysis, Vol. I, Handb. Numer. Anal., I, pages 197–462. North-Holland, Amsterdam. · Zbl 0875.65049
[21] March, R. 1992. Visual reconstruction with discontininuities using variational methods. Image and Vision Computing, 10:30–38. · doi:10.1016/0262-8856(92)90081-D
[22] Merriman, B., Bence, J.K., and Osher, S.J. 1994. Motion of multiple functions: a level set approach. J. Comput. Phys., 112(2):334–363. · Zbl 0805.65090 · doi:10.1006/jcph.1994.1105
[23] Modica, L. and Mortola, S. 1977. Un esempio di {\(\Gamma\)}onvergenza. Boll. Un. Mat. Ital. B (5), 14(1):285–299. · Zbl 0356.49008
[24] Mumford, D. and Shah, J. 1989. Optimal approximations by piecewise smooth functions and associated variational problems. Comm. Pure Appl. Math., 42(5):577–685. · Zbl 0691.49036 · doi:10.1002/cpa.3160420503
[25] Rubinstein, J., Sternberg, P., and Keller, J.B. 1989. Fast reaction, slow diffusion, and curve shortening. SIAM J. Appl. Math., 49(1):116–133. · Zbl 0701.35012 · doi:10.1137/0149007
[26] Rubinstein, J., Sternberg, P., and Keller, J.B. 1993. Front interaction and nonhomogeneous equilibria for tristable reaction-diffusion equations. SIAM J. Appl. Math., 53(6):1669–1685. · Zbl 0806.35081 · doi:10.1137/0153077
[27] Ruuth, S.J. 1998. Efficient algorithms for diffusion-generated motion by mean curvature. J. Comput. Phys., 144(2):603–625. · Zbl 0946.65093 · doi:10.1006/jcph.1998.6025
[28] Samson, C., Blanc-Feraud, L., Aubert, G., and Zerubia, J. 2000. A level set model for image classification. IJCV, 40(3):187–198. · Zbl 1012.68706 · doi:10.1023/A:1008183109594
[29] Samson, C., Blanc-Féraud, L., Aubert, G., and Zerubia, J. 2000. A variational model for image classification and restoration. TPAMI, 22(5):460–472, may. · Zbl 1012.68706
[30] Shen, J. 2005. Gamma-convergence approximation to piecewise constant Mumford-Shah segmentation. Tech. Rep. CAM05-16, UCLA Dep. Math.
[31] Shi, Y. and Karl, W.C. 2005. A fast level set method without solving pdes. In ICASSP’05.
[32] Song, B. and Chan, T.F. 2002. Fast algorithm for level set segmentation. UCLA CAM report 02-68.
[33] Steidl, G., Weickert, J., Brox, T., Mrázek, P., and Welk, M. 2004. On the equivalence of soft wavelet shrinkage, total variation diffusion, total variation regularization, and sides. SIAM J. Numer. Anal., 42(2):686–713 (electronic). · Zbl 1083.94001 · doi:10.1137/S0036142903422429
[34] Vese, L.A. and Chan, T.F. 2002. A new multiphase level set framework for image segmentation via the Mumford and Shah model. International Journal of Computer Vision, 50:271–293. · Zbl 1012.68782 · doi:10.1023/A:1020874308076
[35] Weickert, J. and Kühne, G. 2003. Fast methods for implicit active contour models. In Geometric level set methods in imaging, vision, and graphics, pages 43–57. Springer, New York.
[36] Weickert, J., Romeny, B.H., and Viergever, M.A. 1998. Efficient and reliable schemes for nonlinear diffusion filtering. IEEE TRans. Image Process., 7:398–409. · doi:10.1109/83.661190
[37] Zhao, H.-K., Chan, T., Merriman, B., and Osher, S. 1996. A variational level set approach to multiphase motion. J. Comput. Phys., 127(1):179–195. · Zbl 0860.65050 · doi:10.1006/jcph.1996.0167
[38] Ziemer, W.P. 1989. Weakly differentiable functions. Springer- Verlag. · Zbl 0692.46022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.