×

Geometric speed limit for fermionic dimer as a hallmark of Coulomb interaction. (English) Zbl 1542.81494

Summary: We are investigating the quantum geometric speed limit (QSL) for a Hubbard-type fermionic dimer subjected to the effects of decoherence and driving. The influence of decoherence is explored through the utilization of three distinct models that describe weak connections between the dimer and its environment, employing the Davies approximation. We consider two different types of driving: adiabatic driving and white noise stochastic driving. Our findings demonstrate that the properties of the geometric QSL are affected by both the on-site and inter-site Coulomb interactions among the fermions in the dimer. The interplay between Coulomb interactions and the influence or control exerted by external classical or quantum noise results in distinct time regimes for the evolution of the dimer, characterized by specific and potentially desirable QSL properties.

MSC:

81S22 Open systems, reduced dynamics, master equations, decoherence
82C20 Dynamic lattice systems (kinetic Ising, etc.) and systems on graphs in time-dependent statistical mechanics

Software:

QuTiP
Full Text: DOI

References:

[1] Bengtsson, I.; Życzkowski, K., Geometry of Quantum States, 2006, Cambridge: Cambridge University Press, Cambridge · Zbl 1146.81004 · doi:10.1017/CBO9780511535048
[2] Dittrich, W., Reuter, M.: Classical and Quantum Dynamics. Springer, Berlin (2001) · Zbl 0990.70002
[3] Chruścinski, D.; Jamiołkowski, A., Geometric Phases in Classical and Quantum Mechanics, 2004, Boston: Birkhauser, Boston · Zbl 1075.81002 · doi:10.1007/978-0-8176-8176-0
[4] Sjöqvist, E., Geometry along evolution of mixed quantum states, Phys. Rev. Res., 2, 2020 · doi:10.1103/PhysRevResearch.2.013344
[5] Sjöqvist, E., Geometric phases in quantum information, Int. J. Quantum Chem., 115, 19, 1311-1326, 2015 · doi:10.1002/qua.24941
[6] Dajka, J.; Mierzejewski, M.; Łuczka, J., Geometric phase of interacting qubits: mean-field analysis, Phys. Rev. A, 80, 2009 · doi:10.1103/PhysRevA.80.044303
[7] Deffner, S.; Lutz, E., Quantum speed limit for non-markovian dynamics, Phys. Rev. Lett., 111, 2013 · doi:10.1103/PhysRevLett.111.010402
[8] Deffner, S.; Campbell, S., Quantum speed limits: from Heisenberg’s uncertainty principle to optimal quantum control, J. Phys. A: Math. Theor., 50, 2017 · Zbl 1377.81059 · doi:10.1088/1751-8121/aa86c6
[9] Wu, S-X; Yu, C-S, Quantum speed limit based on the bound of bures angle, Sci. Rep., 10, 5500, 2020 · doi:10.1038/s41598-020-62409-w
[10] Dehdashti, S.; Yasar, F.; Harouni, MB; Mahdifar, A., Quantum speed limit in the thermal spin-boson system with and without tunneling term, Quantum Inf. Process., 19, 308, 2020 · Zbl 1508.81903 · doi:10.1007/s11128-020-02807-1
[11] Awasthi, N.; Haseli, S.; Johri, UC; Salimi, S.; Dolatkhah, H.; Khorashad, AS, Quantum speed limit time for correlated quantum channel, Quantum Inf. Process., 19, 308, 2020 · Zbl 1508.81897 · doi:10.1007/s11128-019-2501-5
[12] Deffner, S., Quantum speed limits and the maximal rate of information production, Phys. Rev. Res., 2, 2020 · doi:10.1103/PhysRevResearch.2.013161
[13] García-Pintos, LP; del Campo, A., Quantum speed limits under continuous quantum measurements, New J. Phys., 21, 2019 · doi:10.1088/1367-2630/ab099e
[14] Brody, DC; Longstaff, B., Evolution speed of open quantum dynamics, Phys. Rev. Res., 1, 2019 · doi:10.1103/PhysRevResearch.1.033127
[15] Khan, F.; Dajka, J., Geometric speed limit of neutrino oscillation, Quantum Inf. Process., 20, 193, 2021 · Zbl 1509.81545 · doi:10.1007/s11128-021-03128-7
[16] Mandelstam, L., Tamm, I.: The Uncertainty Relation Between Energy and Time in Non-relativistic Quantum Mechanics. Springer, Berlin, pp. 115-123 (1991)
[17] Margolus, N., Levitin, L.B.: The maximum speed of dynamical evolution. Physica D: Nonlinear Phenomena, vol. 120, no. 1, pp. 188-195. Proceedings of the Fourth Workshop on Physics and Consumption (1998)
[18] Levitin, LB; Toffoli, T., Fundamental limit on the rate of quantum dynamics: the unified bound is tight, Phys. Rev. Lett., 103, 2009 · doi:10.1103/PhysRevLett.103.160502
[19] Shao, Y.; Liu, B.; Zhang, M.; Yuan, H.; Liu, J., Operational definition of a quantum speed limit, Phys. Rev. Res., 2, 2020 · doi:10.1103/PhysRevResearch.2.023299
[20] Alicki, R.; Lendi, K., Quantum Dynamical Semigroups and Applications, 2007, Berlin: Springer, Berlin · Zbl 1190.46057
[21] Breuer, HP; Petruccione, F., The Theory of Open Quantum Systems, 2002, Oxford: Oxford University Press, Oxford · Zbl 1053.81001
[22] Essler, F.H.L., Frahm, H., Göhmann, F., Klümper, A., Korepin, V.E.: The One-Dimensional Hubbard Model. Cambridge University Press, Cambridge (2005) · Zbl 1107.82014
[23] Nolting, W.; Ramakanth, A., Quantum Theory of Magnetism, 2009, Berlin: Springer, Berlin · Zbl 1177.81002 · doi:10.1007/978-3-540-85416-6
[24] Schliemann, J.; Cirac, JI; Kuś, M.; Lewenstein, M.; Loss, D., Quantum correlations in two-fermion systems, Phys. Rev. A, 64, 2001 · doi:10.1103/PhysRevA.64.022303
[25] Gigena, N.; Rossignoli, R., Entanglement in fermion systems, Phys. Rev. A, 92, 2015 · doi:10.1103/PhysRevA.92.042326
[26] Gigena, N.; Rossignoli, R., Bipartite entanglement in fermion systems, Phys. Rev. A, 95, 2017 · doi:10.1103/PhysRevA.95.062320
[27] Schüler, M.; Rösner, M.; Wehling, TO; Lichtenstein, AI; Katsnelson, MI, Optimal hubbard models for materials with nonlocal coulomb interactions: graphene, silicene, and benzene, Phys. Rev. Lett., 111, 2013 · doi:10.1103/PhysRevLett.111.036601
[28] Cao, X.; Tilloy, A.; Luca, AD, Entanglement in a fermion chain under continuous monitoring, SciPost Phys., 7, 24, 2019 · doi:10.21468/SciPostPhys.7.2.024
[29] Dajka, J.: Currents in a quantum nanoring controlled by non-classical electromagnetic field. Entropy, 23(6) (2021)
[30] Riha, C.; Buchholz, SS; Chiatti, O.; Wieck, AD; Reuter, D.; Fischer, SF, Excess noise in alx ga1-x as/gaas based quantum rings, Appl. Phys. Lett., 117, 6, 2020 · doi:10.1063/5.0002247
[31] Esslinger, T., Fermi-Hubbard physics with atoms in an optical lattice, Annu. Rev. Condens. Matter Phys., 1, 1, 129-152, 2010 · doi:10.1146/annurev-conmatphys-070909-104059
[32] Nakagawa, M.; Kawakami, N.; Ueda, M., Exact Liouvillian spectrum of a one-dimensional dissipative Hubbard model, Phys. Rev. Lett., 126, 2021 · doi:10.1103/PhysRevLett.126.110404
[33] Sponselee, K., Freystatzky, L., Abeln, B., Diem, M., Hundt, B., Kochanke, A., Ponath, T., Santra, B., Mathey, L., Sengstock, K., Becker, C.: Dynamics of ultracold quantum gases in the dissipative fermi-hubbard model. Quantum Sci. Technol., 4, 014002 (2018)
[34] Grabiec, B., Matlak, M.: Extended hubbard model in the dimer representation. i. dimer hamiltonian in the large u limit. Acta Phys. Polonica A, 101, p. 537, 03 (2002)
[35] Silant’ev, A., A dimer in the extended Hubbard model, Russ. Phys. J., 57, 03, 2015 · doi:10.1007/s11182-015-0406-z
[36] Albash, T.; Lidar, DA, Adiabatic quantum computation, Rev. Mod. Phys., 90, 2018 · doi:10.1103/RevModPhys.90.015002
[37] Santos, AC; Sarandy, MS, Sufficient conditions for adiabaticity in open quantum systems, Phys. Rev. A, 102, 2020 · doi:10.1103/PhysRevA.102.052215
[38] Sarandy, MS; Lidar, DA, Adiabatic approximation in open quantum systems, Phys. Rev. A, 71, 2005 · doi:10.1103/PhysRevA.71.012331
[39] Albash, T.; Boixo, S.; Lidar, DA; Zanardi, P., Quantum adiabatic Markovian master equations, New J. Phys., 14, 2012 · Zbl 1448.81389 · doi:10.1088/1367-2630/14/12/123016
[40] Rivas, A.: Quantum thermodynamics in the refined weak coupling limit. Entropy, 21(8) (2019)
[41] Johansson, J.; Nation, P.; Nori, F., Qutip 2: a python framework for the dynamics of open quantum systems, Comput. Phys. Commun., 184, 4, 1234-1240, 2013 · doi:10.1016/j.cpc.2012.11.019
[42] Johansson, J.; Nation, P.; Nori, F., Qutip: an open-source python framework for the dynamics of open quantum systems, Comput. Phys. Commun., 183, 8, 1760-1772, 2012 · doi:10.1016/j.cpc.2012.02.021
[43] Rivas, A., Huelga, S.F.: Open Quantum Systems. Springer (2012) · Zbl 1246.81006
[44] Schlosshauer, M.: Decoherence and the Quantum-to-Classical Transition. Springer (2007)
[45] Elenewski, JE; Gruss, D.; Zwolak, M., Communication: master equations for electron transport: the limits of the Markovian limit, J. Chem. Phys., 147, 10, 2017 · doi:10.1063/1.5000747
[46] Winczewski, M., Mandarino, A., Horodecki, M., Alicki, R.: Bypassing the intermediate times dilemma for open quantum system (2021)
[47] Manzano, D., A short introduction to the Lindblad master equation, AIP Adv., 10, 2, 2020 · doi:10.1063/1.5115323
[48] Jacobs, K.: Quantum Measurement Theory and Its Applications. Cambridge University Press (1999)
[49] Rodríguez, RR; Ahmadi, B.; Mazurek, P.; Barzanjeh, S.; Alicki, R.; Horodecki, P., Catalysis in charging quantum batteries, Phys. Rev. A, 107, 2023 · doi:10.1103/PhysRevA.107.042419
[50] Davies, EB, Quantum Theory of Open Systems, 1976, London: Academic Press, London · Zbl 0388.46044
[51] Spohn, H., Lebowitz, J.L.: Irreversible Thermodynamics for Quantum Systems Weakly Coupled to Thermal Reservoirs. Wiley, pp. 109-142 (1978)
[52] Lendi, K.; van Wonderen, AJ, Davies theory for reservoir-induced entanglement in a bipartite system, J. Phys. A: Math. Theor., 40, 279-288, 2006 · Zbl 1105.81016 · doi:10.1088/1751-8113/40/2/007
[53] Dajka, J., Faint trace of a particle in a noisy vaidman three-path interferometer, Sci. Rep., 11, 1123, 2021 · doi:10.1038/s41598-020-80806-z
[54] Davies, EB; Spohn, H., Open quantum systems with time-dependent hamiltonians and their linear response, J. Stat. Phys., 19, 511-523, 1978 · doi:10.1007/BF01011696
[55] Král, P.; Thanopulos, I.; Shapiro, M., Colloquium: coherently controlled adiabatic passage, Rev. Mod. Phys., 79, 53-77, 2007 · doi:10.1103/RevModPhys.79.53
[56] Łuczka, J., Quantum open systems in a two-state stochastic reservoir, Czech J. Phys., 41, 3, 289-292, 1991 · Zbl 0942.82526 · doi:10.1007/BF01598768
[57] Luczka, J., Niemiec, M.: A master equation for quantum systems driven by poisson white noise. J. Phys. A: Math. General, vol. 24, pp. L1021-L1024 (1991)
[58] Meyer, I.; Shnerb, NM, Noise-induced stabilization and fixation in fluctuating environment, Sci. Rep., 8, 9726, 2018 · doi:10.1038/s41598-018-27982-1
[59] Bason, MG; Viteau, M.; Malossi, N.; Huillery, P.; Arimondo, E.; Ciampini, D.; Fazio, R.; Giovannetti, V.; Mannella, R.; Morsch, O., High-fidelity quantum driving, Nat. Phys., 8, 147-152, 2012 · doi:10.1038/nphys2170
[60] Mierzejewski, M.; Łuczka, J.; Dajka, J., Current in Hubbard rings manipulated via magnetic flux, J. Phys.: Condens. Matter, 22, 2010
[61] Caneva, T.; Murphy, M.; Calarco, T.; Fazio, R.; Montangero, S.; Giovannetti, V.; Santoro, GE, Optimal control at the quantum speed limit, Phys. Rev. Lett., 103, 2009 · doi:10.1103/PhysRevLett.103.240501
[62] Maleki, Y.; Ahansaz, B.; Maleki, A., Speed limit of quantum metrology, Sci. Rep., 13, 12031, 2023 · doi:10.1038/s41598-023-39082-w
[63] Matlak, M.; Aksamit, J.; Grabiec, B.; Nolting, W., Hubbard Hamiltonian in the dimer representation large-u case, Ann. Phys., 12, 5, 304-319, 2003 · Zbl 1023.81047 · doi:10.1002/andp.20035150504
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.