×

Direct continuous-time approaches to system identification. Overview and benefits for practical applications. (English) Zbl 1360.93180

Summary: This paper discusses the importance and relevance of direct continuous-time system identification and how this relates to the solution for model identification problems in practical applications. It first gives a tutorial introduction to the main aspects of one of the most successful existing approaches for directly identifying continuous-time models of dynamical systems from sampled input-output data. Compared with traditional discrete-time model identification methods, the direct continuous-time approaches have some notable advantages that make them more useful in many practical applications. For instance, continuous-time models are more intuitive to control scientists and engineers in their every-day practice and the related estimation methods are particularly well suited to handle rapidly or irregularly sampled data situations. The second part of the paper describes further recent developments of this reliable estimation technique, including its extension to handle coloured measurement noise situations, time-delay system identification, frequency-domain identification, non-uniformly sampled data, closed-loop and nonlinear model identification. It also discusses the software tools available and illustrates their advantages via simulated and real data examples.

MSC:

93B30 System identification
93-02 Research exposition (monographs, survey articles) pertaining to systems and control theory
93C95 Application models in control theory
93B40 Computational methods in systems theory (MSC2010)
93C57 Sampled-data control/observation systems
Full Text: DOI

References:

[1] Aström, K.; Bernhardsson, B., Systems with Lebesgue sampling, (Rantzer, A.; Byrnes, C. I., Directions in Mathematical Systems Theory and Optimization (2003), Springer-Verlag: Springer-Verlag Berlin, Heidelberg), 1-13 · Zbl 1047.93031
[2] Bohlin, T., Practical Grey-box Process Identification (2006), Springer: Springer London · Zbl 1122.93059
[3] Campi, M.; Sugie, T.; Sakai, F., An iterative identification method for linear continuous-time systems, IEEE Trans. Autom. Control, 53, 7, 1661-1669 (2008) · Zbl 1367.93669
[4] Chen, F.; Garnier, H.; Gilson, M., Robust identification of continuous-time models with arbitrary time-delay from irregularly sampled data, J. Process Control, 25, 19-27 (2015)
[6] den Hof, P. V.; Schrama, R., An indirect method for transfer function estimation from closed loop data, Automatica, 29, 6, 1523-1527 (1993) · Zbl 0787.93023
[8] (Garnier, H.; Wang, L., Identification of Continuous-Time Models from Sampled Data (2008), Springer-Verlag: Springer-Verlag London)
[10] Garnier, H.; Young, P., The advantages of directly identifying continuous-time transfer function models, Int. J. Control, 87, 7-9, 1319-1338 (2014) · Zbl 1317.93258
[11] Garnier, H.; Mensler, M.; Richard, A., Continuous-time model identification from sampled data. Implementation issues and performance evaluation, Int. J. Control, 76, 13, 1337-1357 (2003) · Zbl 1050.93014
[12] Garnier, H.; Wang, L.; Young, P. C., Direct identification of continuous-time models from sampled dataissues, basic solutions and relevance, (Garnier, H.; Wang, L., Identification of Continuous-Time Models from Sampled Data (2008), Springer-Verlag: Springer-Verlag London), 1-30
[14] Garnier, H.; Gilson, M.; Young, P. C.; Huselstein, E., An optimal IV technique for identifying continuous-time transfer function model of multiple input systems, Control Eng. Pract., 46, 15, 471-486 (2007)
[16] Garnier, H.; Gilson, M.; Bastogne, T.; Mensler, M., CONTSID toolbox: a software support for continuous-time data-based modelling, (Garnier, H.; Wang, L., Identification of Continuous-Time Models from Sampled Data (2008), Springer: Springer London), 249-290
[17] Gillberg, J.; Ljung, L., Frequency domain identification of continuous-time output error models, Part I: uniformly sampled data and frequency function approximation, Automatica, 46, 1, 1-10 (2010) · Zbl 1214.93113
[19] Gilson, M.; Garnier, H.; Young, P.; Van den Hof, P., Instrumental variable methods for closed-loop continuous-time model identification, (Garnier, H.; Wang, L., Identification of Continuous-Time Models from Sampled Data (2008), Springer: Springer London), 133-160
[20] Gilson, M.; Garnier, H.; Young, P. C.; Van den Hof, P., Optimal instrumental variable method for closed-loop identification, IET Control Theory Appl., 5, 10, 1147-1154 (2011)
[21] Guzman, J.; Rivera, D.; Dormido, S.; Berenguel, M., An interactive software tool for system identification, Adv. Eng. Softw., 45, 1, 115-123 (2012)
[22] Janot, A.; Vandanjon, P.; Gautier, M., A generic instrumental variable approach for industrial robot identification, IEEE Trans. Control Syst. Technol., 22, 1, 132-145 (2014)
[23] Kirchsteiger, H.; Johansson, R.; Renard, E.; del Re, L., Continuous-time interval model identification of blood glucose dynamics for type 1 diabetes, Int. J. Control, 87, 79, 1454-1466 (2014) · Zbl 1317.93037
[25] Laurain, V.; Gilson, M.; Toth, R.; Garnier, H., Refined instrumental variable methods for identification of LPV Box-Jenkins models, Automatica, 46, 6, 959-967 (2010) · Zbl 1192.93121
[26] Laurain, V.; Toth, R.; Gilson, M.; Garnier, H., Direct identification of continuous-time linear parameter-varying input/output models, IET Control Theory Appl., 5, 7, 878-888 (2011)
[27] Laurain, V.; Gilson, M.; Garnier, H., Refined instrumental variable methods for Hammerstein Box-Jenkins models, (Wang, L.; Garnier, H., System Identification, Environmental Modelling, and Control System Design (2012), Springer-Verlag: Springer-Verlag London), 27-48 · Zbl 1328.93270
[29] Liu, X.; Wang, J.; Zheng, W. X., Convergence analysis of refined instrumental variable method for continuous-time system identification, IET Control Theory Appl., 5, 7, 868-877 (2011)
[34] Ljung, L.; Wills, A., Issues in sampling and estimating continuous-time models with stochastic disturbances, Automatica, 46, 925-931 (2010) · Zbl 1191.93137
[36] Marelli, D.; Fu, M., A continuous-time linear system identification method for slowly sampled data, IEEE Trans. Signal Process., 58, 5, 2521-2533 (2010) · Zbl 1391.93273
[38] Mensler, M.; Joe, S.; Kawabe, T., Identification of a toroidal continuously variable transmission using continuous-time system identification methods, Control Eng. Pract., 14, 1, 45-58 (2006)
[39] Miller, D.; Hulett, J.; McLaughin, J.; de Callafon, R., Thermal dynamical identification of light-emitting diodes by step-based realization and convex optimization, IEEE Trans. Compon. Packag. Manuf. Technol., 3, 6, 997-1007 (2013)
[40] Ni, B.; Gilson, M.; Garnier, H., A refined instrumental variable method for Hammerstein-Wiener continuous-time model identification, IET Control Theory Appl., 7, 9, 1276-1286 (2013)
[41] Ninness, B.; Wills, A.; Mills, A., UNITa freely available system identification toolbox, Control Eng. Pract., 21, 5, 631-644 (2013)
[42] Padilla, A.; Yuz, J.; Herzer, B., Continuous-time system identification of the steering dynamics of ship on a river, Int. J. Control, 87, 7-9, 1387-1405 (2014) · Zbl 1317.93260
[43] Pintelon, R.; Schoukens, J., System Identification: A Frequency Domain Approach (2001), Wiley-IEEE Press: Wiley-IEEE Press Piscataway · Zbl 0970.93514
[44] Pintelon, R.; Schoukens, J., Box-Jenkins identification revisited—Part I: theory, Automatica, 42, 1, 63-75 (2006) · Zbl 1121.93072
[45] Pintelon, R.; Schoukens, J.; Rolain, Y., Frequency-domain approach to continuous-time system identification: some practical aspects, (Garnier, H.; Wang, L., Identification of Continuous-Time Models from Sampled Data (2008), Springer-Verlag: Springer-Verlag London), 215-248
[47] Rao, G.; Garnier, H., Identification of continuous-time systemsdirect or indirect ?, Syst. Sci., 30, 3, 25-50 (2004) · Zbl 1087.93508
[49] Söderström, T., How accurate can instrumental variable models become?, (Wang, L.; Garnier, H., System Identification, Environmental Modelling, and Control System Design (2012), Springer-Verlag: Springer-Verlag London), 3-26 · Zbl 1328.93272
[50] Söderström, T.; Stoica, P., Comparison of some instrumental variable methods. Consistency and accuracy aspects, Automatica, 17, 1, 101-115 (1981) · Zbl 0451.93026
[51] Söderström, T.; Stoica, P., Instrumental Variable Methods for System Identification (1983), Springer Verlag: Springer Verlag New York · Zbl 0522.93003
[53] Schorsch, J.; Garnier, H.; Gilson, M.; Young, P. C., Instrumental variable methods for identifying partial differential equation models, Int. J. Control, 86, 12, 2325-2335 (2013) · Zbl 1311.93081
[54] Schoukens, J.; Pintelon, R.; van Hamme, H., Identification of linear dynamic systems using piecewise constant excitationsuse, misuse and alternatives, Automatica, 30, 7, 1153-1169 (1994) · Zbl 0800.93242
[55] Stoïca, P.; Söderström, T., The Steiglitz-McBride identification algorithms revisited. Convergence analysis and accuracy aspects, IEEE Trans. Autom. Control, AC-26, 712-717 (1981) · Zbl 0486.93070
[56] Stoïca, P.; Söderström, T., Optimal instrumental variable estimation and approximate implementations, IEEE Trans. Autom. Control, 28, 7, 757-772 (1983) · Zbl 0515.93055
[57] Taylor, C.; Pedregal, D.; Young, P. C.; Tych, W., Environmental time series analysis and forecasting with the Captain toolbox, Environ. Model. Softw., 22, 6, 797-814 (2007)
[58] Unbehauen, H.; Rao, G., Continuous-time approaches to system identification—a survey, Automatica, 26, 1, 23-35 (1990) · Zbl 0714.93007
[59] Unbehauen, H.; Rao, G., A review of identification in continuous-time systems, Annu. Rev. Control, 22, 145-171 (1998)
[60] Victor, S.; Malti, R.; Garnier, H.; Oustaloup, A., Parameter and differentiation order estimation in fractional models, Automatica, 49, 4, 926-935 (2013) · Zbl 1284.93228
[61] Wang, J.; Zheng, W.; Chen, T., Identification of linear dynamic systems operating in a networked environment, Automatica, 45, 12, 2763-2772 (2009) · Zbl 1192.93123
[62] Young, P. C., An instrumental variable method for real-time identification of a noisy process, Automatica, 6, 271-287 (1970)
[63] Young, P. C., Some observations on instrumental variable methods of time-series analysis, Int. J. Control, 23, 593-612 (1976) · Zbl 0324.93038
[64] Young, P. C., Parameter estimation for continuous-time models—a survey, Automatica, 17, 1, 23-39 (1981) · Zbl 0451.93052
[65] Young, P. C., Recursive estimation, forecasting and adaptive control, (Leondes, C. T., Control and Dynamic Systems: Advances in Theory and Applications (1989), Academic Press: Academic Press San Diego), 119-166 · Zbl 0668.00025
[66] Young, P. C., Data-based mechanistic modeling of environmental, ecological, economic and engineering systems, J. Model. Softw., 13, 105-122 (1998)
[68] Young, P. C., Comment on ‘projection-based identification algorithm for grey-box continuous-time models’, Syst. Control Lett., 69, 62-64 (2014) · Zbl 1288.93036
[69] Young, P. C., Refined instrumental variable estimationmaximum likelihood optimization of a unified Box-Jenkins model, Automatica, 52, 35-46 (2015) · Zbl 1309.93178
[70] Young, P. C.; Garnier, H., Identification and estimation of continuous-time data-based mechanistic (DBM) models for environmental systems, Environ. Model. Softw., 21, 8, 1055-1072 (2006)
[71] Young, P. C.; Jakeman, A., Refined instrumental variable methods of time-series analysisPart III, extensions, Int. J. Control, 31, 741-764 (1980) · Zbl 0468.93089
[73] Young, P. C.; Garnier, H.; Gilson, M., Refined instrumental variable identification of continuous-time hybrid Box-Jenkins models, (Garnier, H.; Wang, L., Identification of Continuous-Time Models from Sampled Data (2008), Springer-Verlag: Springer-Verlag London), 91-132
[75] Young, P. C.; Jakeman, A.; McMurtrie, R., An instrumental variable method for model order identification, Automatica, 16, 281-296 (1980) · Zbl 0454.93049
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.