×

Comparative analysis of the cutting angle and simulated annealing methods in global optimization. (English) Zbl 1100.68653

Summary: This article presents a comparative analysis of two methods of global optimization: the simulated annealing method and a method based on a combination of the cutting angle method and a local search. This analysis is carried out using results of numerical experiments. These results demonstrate that the combined method is more effective than the simulated annealing method.

MSC:

68W40 Analysis of algorithms
65K05 Numerical mathematical programming methods
49M37 Numerical methods based on nonlinear programming
90C30 Nonlinear programming

References:

[1] Aarts E., Simulated Annealing and Boltzmann Machines (1989) · Zbl 0674.90059
[2] DOI: 10.1016/S0377-2217(96)00282-2 · Zbl 0922.90123 · doi:10.1016/S0377-2217(96)00282-2
[3] Andramonov M.Y. Rubinov A.M. Glover B.M. 1997 Cutting angle method for minimizing increasing convex-along-rays functions Research Report 97/7 SITMS, University of Ballarat
[4] DOI: 10.1016/S0893-9659(98)00179-7 · Zbl 0944.90063 · doi:10.1016/S0893-9659(98)00179-7
[5] Bagirov A.M., Investigacao Operacional 19 pp 75– (1999)
[6] DOI: 10.1023/A:1019204407420 · Zbl 0990.90117 · doi:10.1023/A:1019204407420
[7] DOI: 10.1023/A:1024858200805 · Zbl 1033.90126 · doi:10.1023/A:1024858200805
[8] Bagirov A.M., Advances in Convex Analysis and Global Optimization pp pp. 245–268– (2001)
[9] DOI: 10.1023/A:1020256900863 · Zbl 1047.90044 · doi:10.1023/A:1020256900863
[10] Brooks D.G., American Journal of Mathematical and Management Sciences 8 pp 425– (1988) · Zbl 0684.65061 · doi:10.1080/01966324.1988.10737248
[11] DOI: 10.1016/0098-1354(95)00221-9 · doi:10.1016/0098-1354(95)00221-9
[12] DOI: 10.1007/BF00940812 · Zbl 0534.90091 · doi:10.1007/BF00940812
[13] DOI: 10.1145/29380.29864 · Zbl 0632.65075 · doi:10.1145/29380.29864
[14] Gershenfeld N., The Nature of Mathematical Modeling (1999) · Zbl 0905.00015
[15] DOI: 10.1007/BF00933356 · Zbl 0431.49036 · doi:10.1007/BF00933356
[16] DOI: 10.1080/1055678021000030084 · Zbl 1065.90081 · doi:10.1080/1055678021000030084
[17] Horst R., Introduction to Global Optimization, Nonconvex Optimization and Its Applications 3 (1995) · Zbl 0836.90134
[18] DOI: 10.1007/BF01106604 · Zbl 0827.90129 · doi:10.1007/BF01106604
[19] DOI: 10.1126/science.220.4598.671 · Zbl 1225.90162 · doi:10.1126/science.220.4598.671
[20] Locatelli M., Journal of Optimization Theory and Applications 104 pp 121– (2000) · Zbl 0970.90102 · doi:10.1023/A:1004680806815
[21] DOI: 10.1063/1.1699114 · doi:10.1063/1.1699114
[22] Neumaier A. 2003 Optimization test problems Available in: solon.cma.univie.ac.at/neum/glopt.html
[23] DOI: 10.1016/0024-3795(91)90267-Z · Zbl 0729.65047 · doi:10.1016/0024-3795(91)90267-Z
[24] Pinter J., Global Optimization in Action (1996) · doi:10.1007/978-1-4757-2502-5
[25] Modern Heuristics Techniques for Combinatorial Problems (1995)
[26] DOI: 10.1007/BF01100688 · Zbl 0819.90103 · doi:10.1007/BF01100688
[27] Rubinov A.M., Abstract Convexity and Global Optimization (2000) · Zbl 0985.90074 · doi:10.1007/978-1-4757-3200-9
[28] DOI: 10.1080/10556789908805740 · Zbl 0957.90118 · doi:10.1080/10556789908805740
[29] Torn A.A., Global Optimization. Lecture Notes in Computer Science 350 (1989)
[30] Yiu K.F.C., Global Optimization 27 (2003)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.