×

Semiseparable functors and conditions up to retracts. (English) Zbl 07915189

The authors [A. Ardizzoni and L. Bottegoni, J. Algebra 638, 862–917 (2024; Zbl 1531.18004)] introduced the notion of a semiseparable functor, where the properties of semiseparable functors with an adjoint are investigated. Any separable functors in the sense of C. Năstăsescu et al. [J. Algebra 123, No. 2, 397–413 (1989; Zbl 0673.16026)] is semiseparable.
This paper continues the above study in connections with idempotent (Cauchy) completion, introducing and invesigating the notions of (co)reflection and bireflection up to retracts.
The synopsis of the paper goes as follows.
§ 1
recalls the known results on semiseparable functors.
§ 2
is concerned with results involving the idempotent completion. How the notions of faithful, full, fully faithful, semiseparable, separable or naaturally full functor behave with respect to idempotent completion is investigated. (Co)reflections up to retracts and bireflections up to retracts are introduced and invesigated. Semifunctors and semiadjunctions [S. Hayashi, Theor. Comput. Sci. 41, 95–104 (1985; Zbl 0592.03010)] are considered as a tool to provide a characterization of (co)reflections up to retracts. It is shown that a (co)reflection up to retracts comes out to be always surjective up to retracts, and sufficient conditions guaranteeing that a functor is a (co)reflection up to retracts are given.
§ 3
collects the fall-outs of the results achieved so far. It is established that the quotient functor onto the coidentifier category is a coreflection up to retracts and that so is the comparison functor attached to an adjunction whose associated monad is separable. A dual result is obtained for the cocomparison functor in case that the associated comonad is coseparable. These results allow of characterizing a semiseparable right (left) adjoint in terms of (co)separability of the associated (co)monad and the requirement that the (co)comparison functor is a bireflection up to retracts. It is shown that two canonical factorizations attached to a semiseparable right adjoint functor are the same up to an equivalence up to retracts. The idempotent completions of the Kleisli category and Eilenberg-Moore category attached to a separable monad are related, while, in case this monad is induced by an adjunction with semiseparable right adjoint, the idempotent completion of the coidentifier category is added to the picture. An analogue for semiseparable functors of a result obtained by P. Balmer [Adv. Math. 226, No. 5, 4352–4372 (2011; Zbl 1236.18013), Theorem 4.1] in the framework of pre-triangulated categories is established.

MSC:

18A40 Adjoint functors (universal constructions, reflective subcategories, Kan extensions, etc.)
18C20 Eilenberg-Moore and Kleisli constructions for monads
18G80 Derived categories, triangulated categories

References:

[1] Ardizzoni, A.; Bottegoni, L., Semiseparable functors, J. Algebra, 638, 862-917, 2024 · Zbl 1531.18004 · doi:10.1016/j.jalgebra.2023.10.007
[2] Ardizzoni, A.; Caenepeel, S.; Menini, C.; Militaru, G., Naturally full functors in nature, Acta Math. Sin. (Engl. Ser.), 22, 1, 233-250, 2006 · Zbl 1110.16039 · doi:10.1007/s10114-005-0561-1
[3] Ardizzoni, A.; Gómez-Torrecillas, J.; Menini, C., Monadic decompositions and classical Lie theory, Appl. Categ. Struct., 23, 1, 93-105, 2015 · Zbl 1310.18002 · doi:10.1007/s10485-013-9326-7
[4] Ardizzoni, A.; Goyvaerts, I.; Menini, C., Restricted Lie algebras via monadic decomposition, Algebr. Represent. Theory, 21, 4, 703-716, 2018 · Zbl 1402.18006 · doi:10.1007/s10468-017-9734-8
[5] Ardizzoni, A., Menini, C.: Milnor-Moore categories and monadic decomposition. J. Algebra 448, 488-563 (2016) · Zbl 1342.18004
[6] Balmer, P., Separability and triangulated categories, Adv. Math., 226, 5, 4352-4372, 2011 · Zbl 1236.18013 · doi:10.1016/j.aim.2010.12.003
[7] Balmer, P., Stacks of group representations, J. Eur. Math. Soc. (JEMS), 17, 1, 189-228, 2015 · Zbl 1351.20004 · doi:10.4171/jems/501
[8] Balmer, P.; Dell’Ambrogio, I., Green equivalences in equivariant mathematics, Math. Ann., 379, 3-4, 1315-1342, 2021 · Zbl 1535.20263 · doi:10.1007/s00208-021-02145-2
[9] Berger, C., Iterated wreath product of the simplex category and iterated loop spaces, Adv. Math., 213, 1, 230-270, 2007 · Zbl 1127.18008 · doi:10.1016/j.aim.2006.12.006
[10] Bohm, G.; Brzezinski, T.; Wisbauer, R., Monads and comonads on module categories, J. Algebra, 322, 5, 1719-1747, 2009 · Zbl 1208.18003 · doi:10.1016/j.jalgebra.2009.06.003
[11] Borceux, F., Handbook of categorical algebra. 1. Basic category theory encyclopedia of mathematics and its applications, 1994, Cambridge: Cambridge University Press, Cambridge · Zbl 0803.18001
[12] Borceux, F., Handbook of categorical algebra. 2. Categories and structures encyclopedia of mathematics and its applications, 1994, Cambridge: Cambridge University Press, Cambridge · Zbl 0843.18001 · doi:10.1017/CBO9780511525872
[13] Bruguières, A.; Virelizier, A., Hopf monads, Adv. Math., 215, 2, 679-733, 2007 · Zbl 1168.18002 · doi:10.1016/j.aim.2007.04.011
[14] Caenepeel, S.; Militaru, G., Maschke functors, semisimple functors and separable functors of the second kind: applications, J. Pure Appl. Algebra, 178, 2, 131-157, 2003 · Zbl 1020.16023 · doi:10.1016/S0022-4049(02)00190-1
[15] Caenepeel, S.; Militaru, G.; Zhu, S., Frobenius and separable functors for generalized module categories and nonlinear equations. Lecture notes in mathematics, 2002, Berlin: Springer-Verlag, Berlin · Zbl 1008.16036 · doi:10.1007/b83849
[16] Chen, X-W, A note on separable functors and monads with an application to equivariant derived categories, Abh. Math. Semin. Univ. Hambg., 85, 1, 43-52, 2015 · Zbl 1401.18012 · doi:10.1007/s12188-015-0103-4
[17] Dell’Ambrogio, I.; Sanders, B., A note on triangulated monads and categories of module spectra, C. R. Math. Acad. Sci. Paris, 356, 8, 839-842, 2018 · Zbl 1401.18035 · doi:10.1016/j.crma.2018.06.007
[18] DeMeyer, F.; Ingraham, E., Separable algebras over commutative rings. Lecture notes in mathematics, 1971, Berlin-New York: Springer-Verlag, Berlin-New York · Zbl 0215.36602 · doi:10.1007/BFb0061226
[19] Eilenberg, S.; Moore, J., Adjoint functors and triples, Illinois J. Math., 9, 381-398, 1965 · Zbl 0135.02103 · doi:10.1215/ijm/1256068141
[20] Elkins, B.; Zilber, JA, Categories of actions and Morita equivalence, Rocky Mountain J. Math., 6, 2, 199-225, 1976 · Zbl 0363.18004 · doi:10.1216/RMJ-1976-6-2-199
[21] Freyd, P. J.; O’Hearn, P. W.; Power, A. J.; Takeyama, M.; Street, R.; Tennent, R. D., Bireflectivity. Mathematical foundations of programming semantics (New Orleans, LA, 1995), Theoret. Comput. Sci., 228, 1-2, 49-76, 1999 · Zbl 0952.18002 · doi:10.1016/S0304-3975(98)00354-5
[22] Hayashi, S., Adjunction of semifunctors: categorical structures in nonextensional lambda calculus, Theoret. Comput. Sci., 41, 1, 95-104, 1985 · Zbl 0592.03010 · doi:10.1016/0304-3975(85)90062-3
[23] Hoofman, R.: A Note on Semi-adjunctions. Technical Report RUU-CS-90-41. Department of Information and Computing Sciences, Utrecht University (1990)
[24] Hoofman, R., The theory of semi-functors, Math. Struct. Comput. Sci., 3, 1, 93-128, 1993 · Zbl 0791.18001 · doi:10.1017/S096012950000013X
[25] Hoofman, R.; Moerdijk, I., A remark on the theory of semi-functors, Math. Struct. Comput. Sci., 5, 1, 1-8, 1995 · Zbl 0866.18001 · doi:10.1017/S096012950000061X
[26] Johnstone, PT, Remarks on quintessential and persistent localizations, Theory Appl. Categ., 2, 8, 90-99, 1996 · Zbl 0893.18001
[27] Kahn, B.: Zeta and L-functions of varieties and motives, London Math. Soc. Lecture Note Ser. 462. Cambridge University Press, Cambridge (2020) · Zbl 1502.14003
[28] Karoubi, M., K-theory. An introduction Grundlehren der Mathematischen Wissenschaften, 1978, Berlin-New York: Springer-Verlag, Berlin-New York · Zbl 0382.55002
[29] Kleisli, H., Every standard construction is induced by a pair of adjoint functors, Proc. Amer. Math. Soc., 16, 544-546, 1965 · Zbl 0138.01704 · doi:10.1090/S0002-9939-1965-0177024-4
[30] Mac Lane, S., Categories for the working mathematician. Graduate texts in mathematics, 1998, New York: Springer-Verlag, New York · Zbl 0906.18001
[31] Mesablishvili, B., Monads of effective descent type and comonadicity, Theory Appl. Categ., 16, 1, 1-45, 2006 · Zbl 1085.18003
[32] Mesablishvili, B.; Wisbauer, R., QF functors and (co)monads, J. Algebra, 376, 101-122, 2013 · Zbl 1284.18004 · doi:10.1016/j.jalgebra.2012.10.030
[33] Nǎstǎsescu, C.; Van den Bergh, M.; Van Oystaeyen, F., Separable functors applied to graded rings, J. Algebra, 123, 2, 397-413, 1989 · Zbl 0673.16026 · doi:10.1016/0021-8693(89)90053-7
[34] Neeman, A., Triangulated categories. Annals of mathematics studies, 2001, Princeton: Princeton University Press, Princeton · Zbl 0974.18008 · doi:10.1515/9781400837212
[35] Paré, R., On absolute colimits, J. Algebra, 19, 80-95, 1971 · Zbl 0242.18008 · doi:10.1016/0021-8693(71)90116-5
[36] Popescu, N.: Abelian categories with applications to rings and modules. London Math. Soc. Monogr. Academic Press, London-New York (1973) · Zbl 0271.18006
[37] Ritter, M.: On universal properties of additive and preadditive categories. University of Stuttgart, Thesis (2016)
[38] Sun, C., A note on equivariantization of additive categories and triangulated categories, J. Algebra, 534, 483-530, 2019 · Zbl 1435.18019 · doi:10.1016/j.jalgebra.2019.05.045
[39] Zhu, B., Relative approximations and Maschke functors, Bull. Austral. Math. Soc., 67, 2, 219-224, 2003 · Zbl 1042.16031 · doi:10.1017/S0004972700033682
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.