×

Probing of violation of Lorentz invariance by ultracold neutrons in the standard model extension. (English) Zbl 1427.81199

Summary: We analyze a dynamics of ultracold neutrons (UCNs) caused by interactions violating Lorentz invariance within the Standard Model Extension (SME) [V. A. Kostelecký, “Gravity, Lorentz violation, and the standard model”, Phys. Rev. D (3) 69, No. 10, Article ID 105009, 20 p. (2004; doi:10.1103/physrevd.69.105009); with D. Colladay, “CPT violation and the standard model”, ibid. 55, No. 11, 6760–6774 (1997; doi:10.1103/physrevd.55.6760)]. We use the effective non-relativistic potential for interactions violating Lorentz invariance derived by V. A. Kostelecký and C. D. Lane [J. Math. Phys. 40, No. 12, 6245–6253 (1999; Zbl 0964.81027)] and calculate contributions of these interactions to the transition frequencies of transitions between quantum gravitational states of UCNs bouncing in the gravitational field of the Earth. Using the experimental sensitivity of qBounce experiments we make some estimates of upper bounds of parameters of Lorentz invariance violation in the neutron sector of the SME which can serve as a theoretical basis for an experimental analysis. We show that an experimental analysis of transition frequencies of transitions between quantum gravitational states of unpolarized and polarized UCNs should allow to place some new constraints in comparison to the results adduced by V. A. Kostelecký and N. Russell [“Data tables for Lorentz and CPT violation”, Rev. Mod. Phys. 83, No. 1, 12 p. (2011, doi:10.1103/RevModPhys.83.11), 115 p. (2019), arXiv:0801.0287v12].

MSC:

81V22 Unified quantum theories

Citations:

Zbl 0964.81027

References:

[1] Kostelecký, V. A., Gravity, Lorentz violation, and the standard model, Phys. Rev. D, 69, Article 105009 pp. (2004)
[2] Tanabashi, M., Phys. Rev. D, 98, Article 030001 pp. (2018)
[3] Colladay, D.; Kostelecký, V. A., CPT violation and the standard model, Phys. Rev. D, 55, 6760 (1997)
[4] Colladay, D.; Kostelecký, V. A., Lorentz violating extension of the standard model, Phys. Rev. D, 58, Article 116002 pp. (1998)
[5] Bailey, Q. G.; Kostelecký, V. A., Signals for Lorentz violation in post-Newtonian gravity, Phys. Rev. D, 74, Article 045001 pp. (2006)
[6] Kostelecký, V. A.; Tasson, J., Matter-gravity couplings and Lorentz violation, Phys. Rev. D, 83, Article 016013 pp. (2011)
[7] Streater, R. F.; Wightman, A. S., PCT, Spin and Statistics, and All That (1980), Princeton University Press: Princeton University Press Princeton and Oxford, third printing · Zbl 0135.44305
[8] Greenberg, O. W., CPT violation implies violation of Lorentz invariance, Phys. Rev. Lett., 89, Article 231602 pp. (2002)
[9] Bluhm, R.; Kostelecký, V. A.; Russell, N., Testing CPT with anomalous magnetic moments, Phys. Rev. Lett., 79, 1432 (1997)
[10] Bluhm, R.; Kostelecký, V. A.; Russell, N., CPT and Lorentz tests in Penning traps, Phys. Rev. D, 57, 3932 (1998)
[11] Bluhm, R.; Kostelecký, V. A.; Russell, N., CPT and Lorentz tests in hydrogen and anti-hydrogen, Phys. Rev. Lett., 82, 2254 (1999)
[12] Kostelecký, V. A.; Vargas, A. J., Lorentz and CPT tests with hydrogen, antihydrogen, and related systems, Phys. Rev. D, 92, Article 056002 pp. (2015)
[13] Bluhm, R.; Kostelecký, V. A.; Lane, Ch. D., CPT and Lorentz tests with muons, Phys. Rev. Lett., 84, 1098 (2000)
[14] Gomes, A. H.; Kostelecký, V. A.; Vargas, A. J., Laboratory tests of Lorentz and CPT symmetry with muons, Phys. Rev. D, 90, Article 076009 pp. (2014)
[15] Díaz, J. S.; Kostelecký, V. A.; Lehnert, R., Relativity violations and beta decay, Phys. Rev. D, 88, Article 071902 pp. (2013)
[16] Kostelecký, V. A.; Russell, N., Data tables for Lorentz and CPT violation, Rev. Mod. Phys., 83, 11 (2011), 2019 edition
[17] Nesvizhevsky, V. V.; Börner, H. G.; Gagarsky, A. M.; Petrov, G. A.; Petukhov, A. K.; Abele, H.; Bäßler, S.; Stoferle, T.; Solovev, S. M., Search for quantum states of the neutron in a gravitational field: gravitational levels, Nucl. Instrum. Methods A, 440, 754 (2000)
[18] Nesvizhevsky, V. V.; Börner, H. G.; Petukhov, A. K.; Abele, H.; Bäßler, S.; Ruess, F. J.; Stoferle, T.; Westphal, A.; Gagarski, A. M.; Petrov, G. A.; Strelkov, A. V., Quantum states of neutrons in the Earth’s gravitational field, Nature, 415, 297 (2002)
[19] Nesvizhevsky, V. V.; Börner, H. G.; Gagarski, A. M.; Petukhov, A. K.; Abele, H.; Bäßler, S.; Divkovic, G.; Ruess, F. J.; Stoferle, T.; Westphal, A.; Strelkov, A. V.; Protasov, K. V.; Voronin, A. Yu., Measurement of quantum states of neutrons in the earth’s gravitational field, Phys. Rev. D, 67, Article 102002 pp. (2003)
[20] Nesvizhevsky, V. V.; Petukhov, A. K.; Börner, H. G.; Baranova, T. A.; Gagarski, A. M.; Petrov, G. A.; Protasov, K. V.; Voronin, A. Yu.; Bäßler, S.; Abele, H.; Westphal, A.; Lucovac, L., Study of the neutron quantum states in the gravity field, Eur. Phys. J. C, 40, 479 (2005)
[21] Abele, H.; Bäßler, S.; Westphal, A., Quantum states of neutrons in the gravitational field and limits for non-Newtonian interaction in the range between 1 micron and 10 microns, Lect. Notes Phys., 631, 355 (2003)
[22] Nesvizhevsky, V. V.; Protasov, K. V., Constraints on non-Newtonian gravity from the experiment on neutron quantum states in the Earth’s gravitational field, Class. Quantum Gravity, 21, 4557 (2004) · Zbl 1060.83525
[23] Bertolami, O.; Nunes, F. M., Ultracold neutrons, quantum effects of gravity and the weak equivalence principle, Class. Quantum Gravity, 20, L61 (2003) · Zbl 1024.83507
[24] Pokotilovski, Yu. N., Constraints on strongly coupled chameleon fields from the experimental test of the weak equivalence principle for the neutron, Pis’ma Zh. Eksp. Teor. Fiz., 96, 841 (2012); Pokotilovski, Yu. N., JETP Lett., 96, 751 (2013)
[25] Rabi, I. I.; Millman, S.; Kusch, P.; Zacharias, J. R., The molecular beam resonance method for measuring nuclear magnetic moments. The magnetic moments of \({}_3Li^6, {}_3Li^7\) and \({}_3F^{19}\), Phys. Rev., 55, 526 (1939)
[26] Abele, H.; Jenke, T.; Stadler, D.; Geltenbort, P., QuBounce: the dynamics of ultra-cold neutrons falling in the gravity potential of the Earth, Nucl. Phys. A, 827, 593c (2009)
[27] Jenke, T.; Stadler, D.; Abele, H.; Geltenbort, P., Q-BOUNCE—Experiments with quantum bouncing ultracold neutrons, Nucl. Instrum. Methods Phys. Res., Sect. A, 611, 318 (2009)
[28] Abele, H.; Jenke, T.; Leeb, H.; Schmiedmayer, J., Ramsey’s method of separated oscillating fields and its application to gravitationally induced quantum phaseshifts, Phys. Rev. D, 81, Article 065019 pp. (2010)
[29] Jenke, T.; Geltenbort, P.; Lemmel, H.; Abele, H., Realization of a gravity-resonance-spectroscopy technique, Nat. Phys., 7, 468 (2011)
[30] Abele, H.; Leeb, H., Gravitation and quantum interference experiments with neutrons, New J. Phys., 14, Article 055010 pp. (2012)
[31] Jenke, T.; Cronenberg, G.; Bürgdorfer, J.; Chizhova, L. A.; Geltenbort, P.; Ivanov, A. N.; Lauer, T.; Lins, T.; Rotter, S.; Saul, H.; Schmidt, U.; Abele, H., Phys. Rev. Lett., 112, Article 151105 pp. (2014)
[32] Jenke, T.; Abele, H., Experiments with gravitationally-bound ultracold neutrons at the European Spallation Source ESS, Phys. Proc., 51, 67 (2014)
[33] Schmiedmayer, J.; Abele, H., Probing the dark side, Science, 349, 786 (2015)
[34] Cronenberg, G.; Filter, H.; Thalhammer, M.; Jenke, T.; Abele, H.; Geltenbort, P., A gravity of Earth measurement with a qBOUNCE experiment, PoS EPS-HEP2015, 408 (2015)
[35] Abele, H., Precision experiments with cold and ultracold neutrons, Hyperfine Interact., 237, 155 (2016)
[36] Konrad, G.; Abele, H., Cold and ultracold neutrons as probes of new physics, PoS INPC2016, 359 (2017)
[37] Cronenberg, G.; Brax, Ph.; Filter, H.; Geltenbort, P.; Jenke, T.; Pignol, G.; Pitschmann, M.; Thalhammer, M.; Abele, H., Acoustic Rabi oscillations between gravitational quantum states and impact on symmetron dark energy, Nat. Phys., 14, 1022 (2018)
[38] Martín-Ruiz, A.; Escobar, C. A., Testing Lorentz- and CPT-invariance with ultracold neutrons, Phys. Rev. D, 97, Article 095039 pp. (2018)
[39] Escobar, C. A.; Martín-Ruiz, A., Gravitational searches for Lorentz violation with ultracold neutrons, Phys. Rev. D, 99, Article 075032 pp. (2019)
[40] Xiao, Zhi, The CPT-violating effects on neutron’s gravitational bound state; Xiao, Zhi
[41] Khoury, J.; Weltman, A., Chameleon cosmology, Phys. Rev. D, 69, Article 044026 pp. (2004)
[42] Ivanov, A. N.; Höllwieser, R.; Jenke, T.; Wellenzohn, M.; Abele, H., Influence of the chameleon field potential on transition frequencies of gravitationally bound quantum states of ultracold neutrons, Phys. Rev. D, 87, Article 105013 pp. (2013)
[43] Ivanov, A. N.; Wellenzohn, M., Nonrelativistic approximation of the Dirac equation for slow fermions coupled to the chameleon and torsion fields in the gravitational field of the Earth, Phys. Rev. D, 92, Article 065006 pp. (2015)
[44] Ivanov, A. N.; Cronenberg, G.; Höllwieser, R.; Pitschmann, M.; Jenke, T.; Wellenzohn, M.; Abele, H., Exact solution for chameleon field, self-coupled through the Ratra-Peebles potential with \(n = 1\) and confined between two parallel plates, Phys. Rev. D, 94, Article 085005 pp. (2016)
[45] Jaffe, M.; Haslinger, Ph.; Xu, V.; Hamilton (UCLA), P.; Upadhye, A.; Elder, B.; Khoury, J.; Müller, H., Testing sub-gravitational forces on atoms from a miniature, in-vacuum source mass, Nat. Phys., 13, 938 (2017)
[46] Hinterbichler, K.; Khoury, J., Symmetron fields: screening long-range forces through local symmetry restoration, Phys. Rev. Lett., 104, Article 231301 pp. (2010)
[47] Kostelecký, V. A.; Lane, Ch. D., Nonrelativistic quantum Hamiltonian for Lorentz violation, J. Math. Phys., 40, 6245 (1999) · Zbl 0964.81027
[48] Landau, L. D.; Lifshitz, E. M., (Quantum Mechanics, Non-Relativistic Theory. Quantum Mechanics, Non-Relativistic Theory, Course of Theoretical Physics, vol. 3 (1965), Pergamon Press: Pergamon Press Oxford, London, Edinburgh, New York, Paris, Frankfurt) · Zbl 0178.57901
[49] Davydov, A. S., (Quantum Mechanics (1965), Pergamon Press: Pergamon Press Oxford, London, Edinburgh, New York, Paris, Frankfurt) · Zbl 0178.57901
[50] Itzykson, C.; Zuber, J., (Quantum Field Theory (1980), McGraw-Hill: McGraw-Hill New York) · Zbl 0453.05035
[51] Foldy, L. L.; Wouthuysen, S. A., On the Dirac theory of spin 1/2 particle and its nonrelativistic limit, Phys. Rev., 78, 29 (1950) · Zbl 0039.22605
[52] Gibbs, R. L., The quantum bouncer, Am. J. Phys., 43, 25 (1975)
[53] Westphal, A.; Abele, H.; Bäßler, S.; Nesvizhevsky, V. V.; Protasov, K. V.; Voronin, A. Y., A quantum mechanical description of the experiment on the observation of gravitationally bound states, Eur. Phys. J. C, 51, 367 (2007)
[54] Albright, J. R., Integrals of products of Airy functions, J. Phys. A, Math. Gen., 10, 485 (1977) · Zbl 0355.33013
[55] Kostelecký, V. A.; Lane, Ch. D., Constraints on Lorentz violation from clock-comparison experiments, Phys. Rev. D, 60, Article 116010 pp. (1999)
[56] Bluhm, R.; Kostelecký, V. A.; Lane, Ch. D.; Russell, N., Clock-comparison tests of Lorentz and CPT symmetry in space, Phys. Rev. Lett., 88, Article 090801 pp. (2002)
[57] Kostelecký, V. A.; Mewes, M., Signals for Lorentz violation in electrodynamics, Phys. Rev. D, 66, Article 056005 pp. (2002)
[58] Bluhm, R.; Kostelecký, V. A.; Lane, Ch. D.; Russell, N., Probing Lorentz and CPT violation with space-based experiments, Phys. Rev. D, 68, Article 125008 pp. (2003)
[59] Kostelecký, V. A.; Mewes, M., Electrodynamics with Lorentz-violating operators of arbitrary dimension, Phys. Rev. D, 80, Article 015020 pp. (2009)
[60] Ding, Y.; Kostelecký, V. A., Lorentz-violating spinor electrodynamics and Penning traps, Phys. Rev. D, 94, Article 056008 pp. (2016)
[61] GPS coordinates of Grenoble, France · Zbl 1101.83007
[62] Smart, W. M., Textbook on Spherical Astronomy (1977), Cambridge University Press: Cambridge University Press Cambridge, London, sixth edition revised by R. M. Green
[63] A definition of the local sidereal time \(T_\oplus\) as a function of a local laboratory time \(t\) at the ILL laboratory in Grenoble. We set \(T_\oplus = t - t_0\), where \(t_0\) can be determined for every experimental run of qBounce experiments
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.