×

Free-fall in a uniform gravitational field in noncommutative quantum mechanics. (English) Zbl 1314.81109

Summary: We study the free-fall of a quantum particle in the context of noncommutative quantum mechanics (NCQM). Assuming noncommutativity of the canonical type between the coordinates of a two-dimensional configuration space, we consider a neutral particle trapped in a gravitational well and exactly solve the energy eigenvalue problem. By resorting to experimental data from the GRANIT experiment, in which the first energy levels of freely falling quantum ultracold neutrons were determined, we impose an upper-bound on the noncommutativity parameter. We also investigate the time of flight of a quantum particle moving in a uniform gravitational field in NCQM. This is related to the weak equivalence principle. As we consider stationary, energy eigenstates, i.e., delocalized states, the time of flight must be measured by a quantum clock, suitably coupled to the particle. By considering the clock as a small perturbation, we solve the (stationary) scattering problem associated and show that the time of flight is equal to the classical result, when the measurement is made far from the turning point. This result is interpreted as an extension of the equivalence principle to the realm of NCQM.{
©2010 American Institute of Physics}

MSC:

81R60 Noncommutative geometry in quantum theory
81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis
81U05 \(2\)-body potential quantum scattering theory
81Q15 Perturbation theories for operators and differential equations in quantum theory

References:

[1] 1.K.von Meyenn, Scientific Correspondence with Bohr, Einstein, Heisenberg, edited by W.Pauli (Springer-Verlag, Berlin, 1930), Vol. II, p. 15; Scientific Correspondence with Bohr, Einstein, Heisenberg, edited by W.Pauli (Springer-Verlag, Berlin, 1946), Vol. III, p. 380. · Zbl 1120.01014
[2] Snyder, H. S., Phys. Rev., 71, 38 (1947) · Zbl 0035.13101 · doi:10.1103/PhysRev.71.38
[3] Szabo, R. J., Phys. Rep., 378, 207 (2003) · Zbl 1042.81581 · doi:10.1016/S0370-1573(03)00059-0
[4] Jackiw, R., Nucl. Phys. B, Proc. Suppl., 108, 30 (2002) · Zbl 1080.81615 · doi:10.1016/S0920-5632(02)01302-6
[5] 5.A.Connes, M. R.Douglas, and A. S.Schwarz, J. High Energy Phys.JHEPFG1126-670802 (1998) 00310.1088/1126-6708/1998/02/003; N.Seiberg and E.Witten, J. High Energy Phys.JHEPFG1126-670809 (1999) 032.10.1088/1126-6708/1999/09/032 · Zbl 0957.81085
[6] Douglas, M. R.; Nekrasov, N. A., Rev. Mod. Phys., 73, 977 (2001) · Zbl 1205.81126 · doi:10.1103/RevModPhys.73.977
[7] Girotti, H. O.
[8] 8.S.Doplicher, K.Fredenhagen, and J. E.Roberts, Phys. Lett. BPYLBAJ0370-2693331, 39 (1994)10.1016/0370-2693(94)90940-7; S.Doplicher, K.Fredenhagen, and J. E.Roberts, Commun. Math. Phys.CMPHAY0010-3616172, 187 (1995).10.1007/BF02104515 · Zbl 0847.53051
[9] Gamboa, J.; Loewe, M.; Rojas, J. C., Phys. Rev. D, 64, 067901 (2001) · doi:10.1103/PhysRevD.64.067901
[10] 10.L.Mezincescu, e-print arXiv:hep-th/0007046; J.Gamboa, M.Loewe, F.Mendez, and J. C.Rojas, Int. J. Mod. Phys. AIMPAEF0217-751X17, 2555 (2002)10.1142/S0217751X02010960; H. R.Christiansen and F. A.Schaposnik, Phys. Rev. DPRVDAQ0556-282165, 086005 (2002)10.1103/PhysRevD.65.086005; S.Bellucci and A.Yeranyan, Phys. Lett. BPYLBAJ0370-2693609, 418 (2005)10.1016/j.physletb.2005.01.058; X.Calmet and M.Selvaggi, Phys. Rev. DPRVDAQ0556-282174, 037901 (2006).10.1103/PhysRevD.74.037901
[11] 11.V. P.Nair and A. P.Polychronakos, Phys. Lett. BPYLBAJ0370-2693505, 267 (2001)10.1016/S0370-2693(01)00339-2; B.Morariu and A. P.Polychronakos, Nucl. Phys. BNUPBBO0550-3213610, 531 (2001)10.1016/S0550-3213(01)00294-2; S.Bellucci, A.Nersessian, and C.Sochichiu, Phys. Lett. BPYLBAJ0370-2693522, 345 (2001)10.1016/S0370-2693(01)01304-1; S.Bellucci and A.Yeranyan, Phys. Rev. DPRVDAQ0556-282172, 085010 (2005).10.1103/PhysRevD.72.085010
[12] Wu, Y.; Yang, X., Phys. Rev. D, 73, 067701 (2006) · doi:10.1103/PhysRevD.73.067701
[13] 13.J. -Z.Zhang, Phys. Rev. DPRVDAQ0556-282174, 124005 (2006)10.1103/PhysRevD.74.124005; J. -z.Zhang, Phys. Rev. Lett.PRLTAO0031-900793, 043002 (2004)10.1103/PhysRevLett.93.043002; Z.Guralnik, R.Jackiw, S. Y.Pi, and A. P.Polychronakos, Phys. Lett. BPYLBAJ0370-2693517, 450 (2001)10.1016/S0370-2693(01)00986-8; J.Gamboa, M.Loewe, and J. C.Rojas, e-print arXiv:hep-th/0101081. · Zbl 0971.81188
[14] 14.Y. -H.Luo and Z. -M.Ge, Commun. Theor. Phys.CTPHDI0253-610246, 966 (2006)10.1088/0253-6102/46/6/002; F. S.Bemfica and H. O.Girotti, J. Phys. AJPHAC50305-447038, L539 (2005)10.1088/0305-4470/38/30/L01; P. -M.Ho and H. -C.Kao, Phys. Rev. Lett.PRLTAO0031-900788, 151602 (2002).10.1103/PhysRevLett.88.151602
[15] Balachandran, A. P.; Govindarajan, T. R.; Molina, C.; Teotonio-Sobrinho, P., J. High Energy Phys., 2004, 10, 072 · doi:10.1088/1126-6708/2004/10/072
[16] 16.A. P.Balachandran, T. R.Govindarajan, A. G.Martins, and P.Teotonio-Sobrinho, J. High Energy Phys.JHEPFG1126-670811 (2004) 06810.1088/1126-6708/2004/11/068; A. P.Balachandran, A. G.Martins, and P.Teotonio-Sobrinho, J. High Energy Phys.JHEPFG1126-670805 (2007) 066.10.1088/1126-6708/2007/05/066
[17] 17.P. W.Langhoff, Am. J. Phys.AJPIAS0002-950539, 954 (1971)10.1119/1.1986333; J.Gea-Banacloche, Am. J. Phys.AJPIAS0002-950567, 776 (1999)10.1119/1.19124; O.Vallée, Am. J. Phys.AJPIAS0002-950568, 672 (2000)10.1119/1.19510; M. A.Doncheski and R. W.Robinett, Am. J. Phys.AJPIAS0002-950569, 1084 (2001)10.1119/1.1383598; L. D.Landau and E. M.Lifshitz, Quantum Mechanics, 3rd ed. (Pergamon, Oxford, 1976); J. J.Sakurai, Modern Quantum Mechanics (Addison-Wesley, New York, 1994).
[18] 18.V. V.Nesvizhevsky, H. G.Börner, A. K.Petukhov, H.Abele, S.Baeßler, F. J.Rueß, T.Stöferle, A.Westphal, A. M.Gagarski, G. A.Petrov, and A. V.Strelkov, Nature (London)NATUAS0028-0836415, 297 (2002)10.1038/415297a; V. V.Nesvizhevsky, H. G.Börner, A. M.Gagarski, A. K.Petoukhov, G. A.Petrov, H.Abele, S.Baeßler, G.Divkovic, F. J.Rueß, Th.Stöferle, A.Westphal, A. V.Strelkov, K. V.Protasov, and A. Yu.Voronin, Phys. Rev. DPRVDAQ0556-282167, 102002 (2003)10.1103/PhysRevD.67.102002; A.Westphal, H.Abele, S.Baeßler, V. V.Nesvizhevsky, K. V.Protasov, and A. Y.Voronin, Eur. Phys. J. CEPCFFB1434-604451, 367 (2007).10.1140/epjc/s10052-007-0283-x
[19] Nesvizhevsky, V. V.; Petukhov, A. K.; Börner, H. G.; Baranova, T. A.; Gagarski, A. M.; Petrov, G. A.; Protasov, K. V.; Voronin, A. Yu; Baeßler, S.; Abele, H.; Westphal, A.; Lucovac, L., Eur. Phys. J. C, 40, 479 (2005) · doi:10.1140/epjc/s2005-02135-y
[20] Bertolami, O.; Rosa, J. G.; de Aragao, C. M. L.; Castorina, P.; Zappala, D., Phys. Rev. D, 72, 025010 (2005) · doi:10.1103/PhysRevD.72.025010
[21] Banerjee, R.; Dutta Roy, B.; Samanta, S., Phys. Rev. D, 74, 045015 (2006) · doi:10.1103/PhysRevD.74.045015
[22] Saha, A., Eur. Phys. J. C, 51, 199 (2007) · Zbl 1189.83065 · doi:10.1140/epjc/s10052-007-0274-y
[23] 23.F.Buisseret, V.Mathieu, and B.Silvestre-Brac, Class. Quantum Grav.CQGRDG0264-938124, 855 (2007)10.1088/0264-9381/24/4/006; F.Brau and F.Buisseret, Phys. Rev. DPRVDAQ0556-282174, 036002 (2006).10.1103/PhysRevD.74.036002 · Zbl 1206.83135
[24] Kochan, D.; Demetrian, M., Acta Physica Slov., 52, 1 (2002)
[25] Harikumar, E.; Rivelles, V. O., Class. Quantum Grav., 23, 7551 (2006) · Zbl 1133.83370 · doi:10.1088/0264-9381/23/24/024
[26] Bertolami, O.; Guisado, L., Phys. Rev. D, 67, 025001 (2003) · doi:10.1103/PhysRevD.67.025001
[27] Girotti, H. O., Am. J. Phys., 72, 608 (2004) · Zbl 1219.81162 · doi:10.1119/1.1624116
[28] Bemfica, F. S.; Girotti, H. O., Phys. Rev. D, 77, 027704 (2008) · doi:10.1103/PhysRevD.77.027704
[29] Barbosa, G. D., J. High Energy Phys., 2003, 5, 024 · doi:10.1088/1126-6708/2003/05/024
[30] Lämmerzahl, C., Gen. Relativ. Gravit., 28, 1043 (1996) · Zbl 0875.81007 · doi:10.1007/BF02113157
[31] Davies, P. C. W., Class. Quantum Grav., 21, 2761 (2004) · Zbl 1052.81005 · doi:10.1088/0264-9381/21/11/017
[32] Peres, A., Am. J. Phys., 48, 552 (1980) · doi:10.1119/1.12061
[33] Seiberg, N.; Susskind, L.; Toumbas, N., J. High Energy Phys., 2000, 6, 044 · Zbl 0989.81607 · doi:10.1088/1126-6708/2000/06/044
[34] Gomis, J.; Mehen, T., Nucl. Phys. B, 591, 265 (2000) · Zbl 0991.81120 · doi:10.1016/S0550-3213(00)00525-3
[35] Bertolami, O.; Rosa, J. G.; de Aragao, C. M. L.; Castorina, P.; Zappala, D., Mod. Phys. Lett. A, 21, 795 (2006) · doi:10.1142/S0217732306019840
[36] Govaerts, J.; Scholtz, F. G., J. Phys. A, 40, 12415 (2007) · Zbl 1125.81032 · doi:10.1088/1751-8113/40/41/011
[37] Bastos, C.; Bertolami, O.; Dias, N. C.; Prata, J. N., J. Math. Phys., 49, 072101 (2008) · Zbl 1152.81330 · doi:10.1063/1.2944996
[38] Kijanka, A.; Kosinski, P., Phys. Rev. D, 70, 127702 (2004) · doi:10.1103/PhysRevD.70.127702
[39] Kokado, A.; Okamura, T.; Saito, T., Phys. Rev. D, 69, 125007 (2004) · doi:10.1103/PhysRevD.69.125007
[40] 40.M.Reed and B.Simon, Methods of Modern Mathematical Physics (Academic, San Diego, 1980), Vol. I; Methods of Modern Mathematical Physics (Academic, San Diego, 1975), Vol. II. · Zbl 0308.47002
[41] Balachandran, A. P.; Gupta, K. S.; Kurkcuoglu, S., J. High Energy Phys., 2003, 9, 007 · doi:10.1088/1126-6708/2003/09/007
[42] A subset \(D\) of \(H\) is dense (in the topology of \(H)\) if for every \(\phi ∊ H\) there exists a sequence \(\{\phi_j \}, \phi_j ∊ D\), such that \(\phi_j \to \phi\) as \(j \to \infty \). Besides, we have \(\overline{D(H)} = H\), where \(\overline{D(H)}\) is the closure of \(D(H)\).
[43] Let \(T\) be a densely defined operator and \(D(T^\ast) = \{\psi ∊ H : \exists \eta ∊ H \mid(T \phi, \psi) = (\phi, \eta), \forall \phi ∊ D(T) \}\). We define the adjoint \(T^\ast\) of \(T\) as \(T^\ast \psi = \eta , \forall \psi ∊ D(T^\ast)\).
[44] The \(n \text{th}\) weak derivative of the integrable function \(u\) is the integrable function \(v\), such that, for all \(\phi ∊ C_0^\infty(a, b)\), we have \(\int_a^b d \xi u(\xi) \partial_\xi^n \phi(\xi) = (- 1)^n \int_a^b d \xi v(\xi) \phi(\xi)\).
[45] Oliveira, C. R.; Monvel, A. B.; Kaiser, G., Progress in Mathematical Physics, 54 (2008)
[46] Hajlasz, P.; Auscher, P.; Coulhon, T.; Grigor’yan, A., Contemporary Mathematics, 338 (2003)
[47] Wan, K. K., From Micro to Macro Quantum Systems (2006) · Zbl 1102.81002
[48] An operator \(T\) is called closed if and only if its graph, defined as \(G(T) = \{(\phi, \varphi) ∊ H \times H : \varphi = T \phi \}\), is closed. If an operator \(T\) has a closed extension, then it is called closable. The closure of a closable operator \(T\) is the operator \(\overline{T}\) defined by \(G(\overline{T}) = \overline{G(T)} \). It turns out that \(\overline{T}\) is the smallest closed extension of \(T\).
[49] Olver, F. W. J., Asymptotics and Special Functions (1974) · Zbl 0303.41035
[50] Abramowitz, M.; Stegun, I. A., Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, 55 (1972) · Zbl 0543.33001
[51] Voronov, B. L.; Gitman, D. M.; Tyutin, I. V., Russ. Phys. J., 51, 115 (2008) · Zbl 1165.81023 · doi:10.1007/s11182-008-9039-9
[52] Coddington, E. A.; Levinson, N., Theory of Ordinary Differential Equations (1955) · Zbl 0064.33002
[53] Werner, S. A.; Colella, R.; Overhauser, A. W.; Eagen, C. F., Phys. Rev. Lett., 35, 1053 (1975) · doi:10.1103/PhysRevLett.35.1053
[54] Carroll, S. M.; Harvey, J. A.; Kostelecky, V. A.; Lane, C. D.; Okamoto, T., Phys. Rev. Lett., 87, 141601 (2001) · doi:10.1103/PhysRevLett.87.141601
[55] Chaichian, M.; Sheikh-Jabbari, M. M.; Tureanu, A., Phys. Rev. Lett., 86, 2716 (2001) · doi:10.1103/PhysRevLett.86.2716
[56] Bertolami, O.; Nunes, F. M., Class. Quantum Grav., 20, L61 (2003) · Zbl 1024.83507 · doi:10.1088/0264-9381/20/5/103
[57] Peres, A., Quantum Theory: Concepts and Methods (1993) · Zbl 0820.00011
[58] Leavens, C. R., Solid State Commun., 86, 781 (1993) · doi:10.1016/0038-1098(93)90108-Y
[59] Viola, L.; Onofrio, R., Phys. Rev. D, 55, 455 (1997) · doi:10.1103/PhysRevD.55.455
[60] Chaichian, M.; Nishijima, K.; Tureanu, A., Phys. Lett. B, 568, 146 (2003) · Zbl 1051.81049 · doi:10.1016/j.physletb.2003.06.009
[61] 61.S. W.Hawking, Phys. Rev. DPRVDAQ0556-282114, 2460 (1976)10.1103/PhysRevD.14.2460; R. M.Wald, Phys. Rev. DPRVDAQ0556-282121, 2742 (1980).10.1103/PhysRevD.21.2742
[62] Amelino-Camelia, G., Phys. Rev. D, 62, 024015 (2000) · doi:10.1103/PhysRevD.62.024015
[63] Alonso, D.; Mayato, R. S.; Muga, J. G., Phys. Rev. A, 67, 032105 (2003) · doi:10.1103/PhysRevA.67.032105
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.