×

Modular Schur numbers. (English) Zbl 1295.11004

Summary: For any positive integers \(l\) and \(m\), a set of integers is said to be (weakly) \(l\)-sum-free modulo \(m\) if it contains no (pairwise distinct) elements \(x_1,x_2,\ldots,x_l,y\) satisfying the congruence \(x_1+\ldots+x_l\equiv y\bmod{m}\). It is proved that, for any positive integers \(k\) and \(l\), there exists a largest integer \(n\) for which the set of the first \(n\) positive integers \(\{1,2,\ldots,n\}\) admits a partition into \(k\) (weakly) \(l\)-sum-free sets modulo \(m\). This number is called the generalized (weak) Schur number modulo \(m\), associated with \(k\) and \(l\). In this paper, for all positive integers \(k\) and \(l\), the exact value of these modular Schur numbers are determined for \(m=1, 2\) and 3.

MSC:

11A07 Congruences; primitive roots; residue systems
05A17 Combinatorial aspects of partitions of integers
05C55 Generalized Ramsey theory
05D10 Ramsey theory
11P81 Elementary theory of partitions
11P83 Partitions; congruences and congruential restrictions

References:

[1] H.L. Abbott and D. Hanson. A problem of Schur and its generalizations. Acta Arith., 20:175-187, 1972. · Zbl 0207.54802
[2] H.L. Abbott and E.T.H. Wang. Sum-free sets of integers. Proc. Amer. Math. Soc., 67:11-16, 1977. · Zbl 0369.10034
[3] A. Beutelspacher and W. Brestovansky. Generalized Schur numbers. Lecture Notes in Math., 969:30-38, 1982. · Zbl 0498.05002
[4] P.F. Blanchard, F. Harary and R. Reis. Partitions into sum-free sets. Integers, 6:Article A7, 2006. · Zbl 1134.11312
[5] S. Eliahou, J.M. Mar´ın, M.P. Revuelta and M.I. Sanz. Weak Schur numbers and the search for G.W. Walker’s lost partitions. Comput. Math. Appl., 63:175-182, 2012. · Zbl 1238.11031
[6] G. Exoo. A lower bound for Schur numbers and multicolor Ramsey numbers of K3. Electron. J. Combin., 1:#R8, 1994. · Zbl 0814.05057
[7] H. Fredricksen and M.M. Sweet. Symmetric sum-free partitions and lower bounds for Schur numbers. Electron. J. Combin., 7:#R32, 2000. · Zbl 0944.05093
[8] R.K. Guy. Unsolved Problems in Number Theory (3rd ed.), Problem Books in Mathematics, Springer-Verlag, New York, 2004. · Zbl 1058.11001
[9] R.W. Irving. An extension of Schur’s theorem on sum-free partitions. Acta Arith., 25:55-64, 1973. · Zbl 0241.10036
[10] B.M. Landman and A. Robertson. Ramsey theory on the integers. Student Mathematical Library 24, Providence, RI: American Mathematical Society (AMS), 2004. · Zbl 1035.05096
[11] R. Rado. Studien zur Kombinatorik. Math. Z., 36:424-470, 1933. · Zbl 0006.14603
[12] M.I. Sanz. N´umeros de Schur y de Rado. Departamento de Matem´atica Aplicada I, Universidad de Sevilla, 2010.
[13] I. Schur. ¨Uber die Kongruenz xm+ ym≡ zm(mod p). Jahresber. Deutsch. Math.Verein., 25:114-117, 1916. · JFM 46.0193.02
[14] W. Sierpinski. Elementary theory of numbers (2nd ed.), North-Holland Mathematical Library 31, North-Holland Publishing, Amsterdam, 1988. · Zbl 0638.10001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.