×

Weyl asymptotic formula for the Laplacian on domains with rough boundaries. (English) Zbl 1076.35085

The authors study asymptotic distribution of eigenvalues of the Laplacian on a bounded domain in \(\mathbb R^n\). They introduce a different technique which does not use an extension theorem. It allows to apply the Dirichlet-Neumann bracketing. They obtain the Weyl asymptotic formula with a remainder estimate for the Neumann Laplacian on domains without the extension property. The results are extended to a large class of domains and higher order operators. Other possible generalizations are discussed at the end.

MSC:

35P20 Asymptotic distributions of eigenvalues in context of PDEs
35J25 Boundary value problems for second-order elliptic equations
47F05 General theory of partial differential operators

References:

[1] Burenkov, V., Davies, E.B.: Spectral stability of the Neumann Laplacian. J. Diff. Eqs. 186(2), 485-508 (2002) · Zbl 1042.35035 · doi:10.1016/S0022-0396(02)00033-5
[2] Bronstein, M., Ivrii, V.: Sharp spectral asymptotics for operators with irregular coefficients. I. Pushing the limits. Commun. Part. Diff. Eqs. 28(1-2), 83-102 (2003) · Zbl 1027.58019
[3] van den Berg, M., Levitin, M.: Functions of Weierstrass type and spectral asymptotics for iterated sets. Quart. J. Math. Oxford Ser. 47(188), 493-509 (1996) · Zbl 0867.35068
[4] van den Berg, M., Lianantonakis, M.: Asymptotics for the spectrum of the Dirichlet Laplacian on horn-shaped regions. Indiana Univ. Math. J. 50(1), 299-333 (2001) · Zbl 1040.35052
[5] Birman, M.S., Solomyak, M.Z.: The principal term of spectral asymptotics for ?non-smooth? elliptic problems. Funkt. Anal. i Pril. 4:4, 1-13 (1970) (Russian); English transl. Funct. Anal. Appl. 4 (1971)
[6] Fedosov, B.: Asymptotic formulae for the eigenvalues of the Laplace operator in the case of a polygonal domain. (Russian), Dokl. Akad. Nauk SSSR 151, 786-789 (1963)
[7] de Guzmán, M.: Differentiation of integrals in ?n . Lecture Notes in Mathematics, V. 481, Berlin-Heidelberg-New York: Springer Verlag, 1975
[8] Hempel, R., Seco, L., Simon, B.: The essential spectrum of Neumann Laplacians on some bounded singular domains. J. Funct. Anal. 102(2), 448-483 (1991) · Zbl 0741.35043 · doi:10.1016/0022-1236(91)90130-W
[9] Ivrii, V.: On the second term of the spectral asymptotics for the Laplace-Beltrami operator on manifolds with boundary. Funkt. Anal. i Pril. 14(2), 25-34 (1980); English transl. Funct. Anal. Appl. 14, 98-106 (1980) · Zbl 0448.58024
[10] Ivrii, V.: The asymptotic Weyl formula for the Laplace-Beltrami operator in Riemannian polyhedra and domains with conical singularities of the boundary. Dokl. Akad. Nauk SSSR 288, 35-38 (1986) (Russian)
[11] Ivrii, V.: Microlocal Analysis and Precise Spectral Asymptotics. SMM, Berlin-Heidelberg-New York: Springer-Verlag, SMM, 1998 · Zbl 0906.35003
[12] Ivrii, V.: Sharp spectral asymptotics for operators with irregular coefficients. II. Domains with boundaries and degenerations. Commun. Part. Diff. Eqs. 28(1-2), 103-128 (2003) · Zbl 1027.58020
[13] Levitin, M., Vassiliev, D.: Spectral asymptotics, renewal theorem, and the Berry conjecture for a class of fractals. Proc. Lond. Math. Soc. 72, 188-214 (1996) · Zbl 0837.35105 · doi:10.1112/plms/s3-72.1.188
[14] Maz?ya, V.: On Neumann?s problem for domains with irregular boundaries. Siberian Math. J. 9, 990-1012 (1968)
[15] Maz?ya, V.: Sobolev spaces. Leningrad: Leningrad University, 1985. English translation in Springer Series in Soviet Mathematics, Berlin: Springer-Verlag, 1985
[16] Mason, C.: Log-Sobolev inequalities and regions with exterior exponential cusps. J. Funct. Anal. 198, 341-360 (2003) · Zbl 1036.47032 · doi:10.1016/S0022-1236(03)00049-1
[17] Métivier, G.: Valeurs propres de problemes aux limites elliptiques irrégulières. (French). Bull. Soc. Math. France Suppl. Mém. 51-52, 125-219 (1977)
[18] Miyazaki, Y.: A sharp asymptotic remainder estimate for the eigenvalues of operators associated with strongly elliptic sesquilinear forms. Japan J. Math. 15(1), 65-97 (1989) · Zbl 0703.35137
[19] Molchanov, S., Vainberg, B.: On spectral asymptotics for domains with fractal boundaries of cabbage type. Math. Phys. Anal. Geom. 1(2), 145-170 (1998) · Zbl 0913.35099 · doi:10.1023/A:1009761805247
[20] Riesz, F., Sz.-Nagy, B.: Leçons d?analyse fonctionnelle. (French). Académie des Sciences de Hongrie, Budapest: Akadémiai Kiadó, 1952; English translation: Funct. Anal. New York: Dover Publications Inc. 1990
[21] Seeley, R.: An estimate near the boundary for the spectral function of the Laplace operator. Am. J. Math. 102(5), 869-902 (1980) · Zbl 0447.35029 · doi:10.2307/2374196
[22] Stein, E.: Singular integrals and differentiability properties of functions. Princeton NJ: Princeton University Press, 1970 · Zbl 0207.13501
[23] Safarov, Yu.: Fourier Tauberian Theorems and applications. J. Funct. Anal. 185, 111-128 (2001) · Zbl 1200.35204 · doi:10.1006/jfan.2001.3764
[24] Simon, B.: The Neumann Laplacian of a jelly roll. Proc. Am. Math. Soc. 114(3), 783-785 (1992) · Zbl 0758.47005 · doi:10.1090/S0002-9939-1992-1076578-X
[25] Safarov, Yu., Vassiliev, D.: The asymptotic distribution of eigenvalues of partial differential operators. Providence, RI: American Mathematical Society, 1996 · Zbl 0870.35003
[26] Vassiliev, D.: Two-term asymptotic behavior of the spectrum of a boundary value problem in the case of a piecewise smooth boundary. Dokl. Akad. Nauk SSSR 286(5), 1043-1046 (1986); English translation: Soviet Math. Dokl. 33(1), 227-230 (1986)
[27] van der Waerden, B.L.: Ein einfaches Beispiel einer nichtdifferenzierbaren stetigen Funktion. Math. Zeitschr. 32, 474-475 (1930) · JFM 56.0929.02 · doi:10.1007/BF01194647
[28] Zielinski, L.: Asymptotic distribution of eigenvalues for elliptic boundary value problems. Asymptot. Anal. 16(3-4), 181-201 (1998) · Zbl 0945.35068
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.