×

Hybrid perturbation-polynomial chaos approaches to the random algebraic eigenvalue problem. (English) Zbl 1253.74028

Summary: The analysis of structures is affected by uncertainty in the structure’s material properties, geometric parameters, boundary conditions and applied loads. These uncertainties can be modelled by random variables and random fields. Amongst the various problems affected by uncertainty, the random eigenvalue problem is specially important when analyzing the dynamic behavior or the buckling of a structure. The methods that stand out in dealing with the random eigenvalue problem are the perturbation method and methods based on Monte Carlo Simulation. In the past few years, methods based on Polynomial Chaos (PC) have been developed for this problem, where each eigenvalue and eigenvector are represented by a PC expansion. In this paper four variants of a method hybridizing perturbation and PC expansion approaches are proposed and compared. The methods use Rayleigh quotient, the power method, the inverse power method and the eigenvalue equation. PC expansions of eigenvalues and eigenvectors are obtained with the proposed methods. The new methods are applied to the problem of an Euler Bernoulli beam and a thin plate with stochastic properties.

MSC:

74E35 Random structure in solid mechanics
65F15 Numerical computation of eigenvalues and eigenvectors of matrices
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
74K20 Plates
15B52 Random matrices (algebraic aspects)
65C05 Monte Carlo methods
60G35 Signal detection and filtering (aspects of stochastic processes)
60H35 Computational methods for stochastic equations (aspects of stochastic analysis)
Full Text: DOI

References:

[1] Jones, R. M., Buckling of Bars, Plates, and Shells (2006), Bull Ridge Publishing: Bull Ridge Publishing Blacksburg, Virginia
[2] Géradin, M.; Rixen, D., Mechanical Vibrations (1997), John Wiley & Sons: John Wiley & Sons New York, NY, Translation of: Théorie des Vibrations
[3] Wilkinson, J. H., The Algebraic Eigenvalue Problem (1965), Oxford University Press: Oxford University Press Amen House, London E.C.4 · Zbl 0258.65037
[4] Mehta, M. L., Random Matrices (1991), Academic Press: Academic Press San Diego, CA · Zbl 0594.60067
[5] Muirhead, R. J., Aspects of Multivariate Statistical Theory (1982), John Wiley and Sons: John Wiley and Sons New York, USA · Zbl 0556.62028
[6] Ghanem, R.; Spanos, P., Stochastic Finite Elements: A Spectral Approach (1991), Springer-Verlag: Springer-Verlag New York, USA · Zbl 0722.73080
[7] B. Sudret, A. Der-Kiureghian, Stochastic finite element methods and reliability, Tech. Rep. UCB/SEMM-2000/08, Department of Civil & Environmental Engineering, University Of California, Berkeley, November 2000.; B. Sudret, A. Der-Kiureghian, Stochastic finite element methods and reliability, Tech. Rep. UCB/SEMM-2000/08, Department of Civil & Environmental Engineering, University Of California, Berkeley, November 2000.
[8] Stefanou, G., The stochastic finite element method: Past, present and future, Computer Methods in Applied Mechanics and Engineering, 198, 9-12, 1031-1051 (2009) · Zbl 1229.74140
[9] Szekely, G. S.; Schuëller, G. I., Computational procedure for a fast calculation of eigenvectors and eigenvalues of structures with random properties, Computer Methods in Applied Mechanics and Engineering, 191, 8-10, 799-816 (2001) · Zbl 1016.74030
[10] Pradlwarter, H. J.; Schuëller, G. I.; Szekely, G. S., Random eigenvalue problems for large systems, Computer and Structures, 80, 27-30, 2415-2424 (2002)
[11] Du, S.; Ellingwood, B. R.; Cox, J. V., Initialization strategies in simulation-based sfe eigenvalue analysis, Computer-Aided Civil and Infrastructure Engineering, 20, 5, 304-315 (2005)
[12] Kleiber, M.; Hien, T. D., The Stochastic Finite Element Method (1992), John Wiley: John Wiley Chichester · Zbl 0727.73098
[13] Fox, R. L.; Kapoor, M. P., Rates of change of eigenvalues and eigenvectors, AIAA Journal, 6, 12, 2426-2429 (1968) · Zbl 0181.53003
[14] Hasselman, T. K.; Hart, G. C., Modal analysis of random structural system, Journal of Engineering Mechanics, ASCE, 98, EM3, 561-579 (1972)
[15] Chen, S. H.; Yang, X. W.; Lian, H. D., Comparison of several eigenvalue reanalysis methods for modified structures, Structural and Multidisciplinary Optimization, 20, 4, 253-259 (2000)
[16] Eldred, M. S., Higher order eigenpair perturbations, AIAA Journal, 30, 7, 1870-1876 (1992) · Zbl 0825.73454
[17] Chen, S.-H.; Song, D.-T.; Ma, A.-J., Eigensolution reanalysis of modified structures using perturbations and rayleigh quotients, Communications in Numerical Methods in Engineering, 10, 2, 111-119 (1994) · Zbl 0791.73079
[18] Liu, X. L.; Oliveira, C. S., Iterative modal perturbation and reanalysis of eigenvalue problem, Communications in Numerical Methods in Engineering, 19, 4, 263-274 (2003) · Zbl 1017.65034
[19] Nair, P. B.; Keane, A. J., An approximate solution scheme for the algebraic random eigenvalue problem, Journal of Sound and Vibration, 260, 1, 45-65 (2003)
[20] Grigoriu, M., A solution of random eigenvalue problem by crossing theory, Journal of Sound and Vibration, 158, 1, 69-80 (1992) · Zbl 0915.15023
[21] Lee, C.; Singh, R., Analysis of discrete vibratory systems with parameter uncertainties, part i: Eigensolution, Journal of Sound and Vibration, 174, 3, 379-394 (1994) · Zbl 0949.74509
[22] Rahman, S., A solution of the random eigenvalue problem by a dimensional decomposition method, International Journal for Numerical Methods in Engineering, 67, 9, 1318-1340 (2006) · Zbl 1113.74031
[23] Rahman, S., Probability distributions of natural frequencies of uncertain dynamic systems, AIAA Journal, 47, 6, 1579-1589 (2009)
[24] Adhikari, S.; Friswell, M. I., Random matrix eigenvalue problems in structural dynamics, International Journal for Numerical Methods in Engineering, 69, 3, 562-591 (2007) · Zbl 1194.74152
[25] Adhikari, S., Joint statistics of natural frequencies of stochastic dynamic systems, Computational Mechanics, 40, 4, 739-752 (2007) · Zbl 1188.74025
[26] Bressolette, P.; Fogli, M.; Chauvière, C., A stochastic collocation method for large classes of mechanical problems with uncertain parameters, Probabilistic Engineering Mechanics, 25, 2, 255-270 (2010)
[27] Pichler, L.; Pradlwarter, H.; Schuëller, G., A mode-based meta-model for the frequency response functions of uncertain structural systems, Computers and Structures, 87, 5-6, 332-341 (2009)
[28] Alibrandi, U.; Impollonia, N.; Ricciardi, G., Probabilistic eigenvalue buckling analysis solved through the ratio of polynomial response surface, Computer Methods in Applied Mechanics and Engineering, 199, 9-12, 450-464 (2010) · Zbl 1227.74025
[29] Goller, B.; Pradlwarter, H. J.; Schuëller, G. I., An interpolation scheme for the approximation of dynamical systems, Computer Methods in Applied Mechanics and Engineering, 200, 1-4, 414-423 (2011) · Zbl 1225.74042
[30] Martowicz, A.; Uhl, T., Assessment of variation of natural frequencies of fe model based on the application of alpha-cut strategy and genetic algorithms, Finite Elements in Analysis and Design, 47, 1, 63-71 (2011)
[31] Williams, M. M.R., A method for solving stochastic eigenvalue problems, Applied Mathematics and Computation, 215, 11, 3906-3928 (2010) · Zbl 1184.65017
[32] Ghosh, D.; Ghanem, R. G.; Red-Horse, J., Analysis of eigenvalues and modal interaction of stochastic systems, AIAA Journal, 43, 10, 2196-2201 (2005)
[33] Verhoosel, C. V.; Gutiérrez, M. A.; Hulshoff, S. J., Iterative solution of the random eigenvalue problem with application to spectral stochastic finite element systems, International Journal for Numerical Methods in Engineering, 68, 4, 401-424 (2006) · Zbl 1127.76054
[34] Ghanem, R. G.; Ghosh, D., Efficient characterization of the random eigenvalue problem in a polynomial chaos decomposition, International Journal for Numerical Methods in Engineering, 72, 486-504 (2007) · Zbl 1194.74153
[35] Ghosh, D.; Ghanem, R. G., Stochastic convergence acceleration through basis enrichment of polynomial chaos expansions, International Journal for Numerical Methods in Engineering, 73, 2, 162-184 (2008) · Zbl 1262.60032
[36] Sachdeva, S. K.; Nair, P. B.; Keane, A. J., Hybridization of stochastic reduced basis methods with polynomial chaos expansions, Probabilistic Engineering Mechanics, 21, 2, 182-192 (2006)
[37] Maute, K.; Weickum, G.; Eldred, M., A reduced-order stochastic finite element approach for design optimization under uncertainty, Structural Safety, 31, 6, 450 (2009)
[38] Li, C. C.; Derkiureghian, A., Optimal discretization of random fields, Journal of Engineering Mechanics - ASCE, 119, 6, 1136-1154 (1993)
[39] Xiu, D. B.; Karniadakis, G. E., The Wiener-Askey polynomial chaos for stochastic differential equations, Siam Journal on Scientific Computing, 24, 2, 619-644 (2002) · Zbl 1014.65004
[40] Wan, X. L.; Karniadakis, G. E., Beyond Wiener-Askey expansions: handling arbitrary pdfs, Journal of Scientific Computing, 27, 3, 455-464 (2006) · Zbl 1102.65006
[41] Bellman, R., Introduction to Matrix Analysis (1960), McGraw-Hill: McGraw-Hill New York, USA · Zbl 0124.01001
[42] Nelson, R. B., Simplified calculation of eigenvector derivatives, AIAA Journal, 14, 9, 1201-1205 (1976) · Zbl 0342.65021
[43] Friswell, M. I.; Adhikari, S., Derivatives of complex eigenvectors using Nelson’s method, AIAA Journal, 38, 12, 2355-2357 (2000)
[44] Mills-Curran, W. C., Calculation of eigenvector derivatives for structures with repeated eigenvalues, AIAA Journal, 26, 7, 867-871 (1988) · Zbl 0665.73069
[45] Friswell, M. I., The derivatives of repeated eigenvalues and their associated eigenvectors, ASME Journal of Vibration and Acoustics, 18, 390-397 (1996)
[46] Adhikari, S., Calculation of derivative of complex modes using classical normal modes, Computer and Structures, 77, 6, 625-633 (2000)
[47] du Bois, J. L.; Adhikari, S.; Lieven, N. A.J., On the quantification of eigenvalue curve veering: A veering index, Transactions of ASME, Journal of Applied Mechanics, 78, 4, 041007:1-8 (2011)
[48] Gallina, A.; Pichler, L.; Uhl, T., Enhanced meta-modelling technique for analysis of mode crossing, mode veering and mode coalescence in structural dynamics, Mechanical Systems and Signal Processing, 25, 7, 2297-2312 (2011)
[49] Maître, O. P.L.; Knio, O. M., Spectral Methods for Uncertainty Quantification: With Applications to Computational Fluid Dynamics (2010), Springer: Springer Berlin, Germany · Zbl 1193.76003
[50] Dawe, D., Matrix and Finite Element Displacement Analysis of Structures (1984), Oxford University Press: Oxford University Press Oxford, UK · Zbl 0651.73032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.