×

A nonlocal model of phytoplankton aggregation. (English) Zbl 1077.35059

Summary: Our main goal in this paper is the development and analysis of an aggregation model of phytoplankton. The model is the continuum limit of an interacting particle model describing a “long-ranged” aggregation mechanism among particles. It consists of an integro-differential advection-diffusion equation, with a convolution term responsible for the agreggation process. The nonlinearity in the equation is homogeneous of degree one, which introduces several complications. We prove that the Cauchy problem associated to this model is well posed, i.e., there exists a unique global positive solution and it satisfies the principle of conservation of mass. Further, we establish the existence of nonuniform stationary solutions using the topological degree theory, namely Leray-Schauder’s fixed point theorem. This asymptotic result agrees with our beliefs that nonlinear interactions at small scales can produce some aggregating patterns at large scales.

MSC:

35K57 Reaction-diffusion equations
92D40 Ecology
47D06 One-parameter semigroups and linear evolution equations
47N60 Applications of operator theory in chemistry and life sciences
Full Text: DOI

References:

[1] Adioui, M.; Arino, O.; Smith, W. V.; P Treuil, J., A mathematical analysis of a fish school model, J. Differential Equations, 188, 406-446 (2003) · Zbl 1028.34053
[2] Bell, W.; Mitchell, R., Chemotactic and growth responses of marine bacteria to algal extracellular products, Biol. Bull., 143, 265-277 (1972)
[3] H.C. Berg, Random Walks in Biology, Princeton University Press, Princeton, p. 152.; H.C. Berg, Random Walks in Biology, Princeton University Press, Princeton, p. 152.
[4] Dam, H. G.; Drapeau, D. T., Coagulation efficiency, organic-matter glues and the dynamics of particles during a phytoplankton bloom in a mesocosm study, Deep-Sea Res., 42, 111-123 (1995)
[5] Deimling, K., Non-linear Functional Analysis (1985), Springer: Springer Berlin, New York · Zbl 0559.47040
[6] Drapeau, D. T.; Dam, H. G.; Grenier, G., An improved flocculator design for use in particle aggregation experiments, Limnol. Oceanogr., 39, 723-729 (1994)
[7] Fitt, W. K., Chemosensory responses of the symbiotic dinoflagellate Symbiodinium microadriatica (Dinophycae), J. Phycol., 21, 62-67 (1985)
[8] Gärtner, J., On the Mckean-Vlasov limit for interacting diffusions, Math. Nachr., 137, 197-248 (1988) · Zbl 0678.60100
[9] S. Ghosal, M. Rogers, A. Wray, The turbulent life of phytoplankton, Proceedings of the Summer Programm, Center for Turbulence Research, 2000.; S. Ghosal, M. Rogers, A. Wray, The turbulent life of phytoplankton, Proceedings of the Summer Programm, Center for Turbulence Research, 2000.
[10] Hill, P. S., Reconciling aggregation theory with observed vertical fluxes following phytoplankton blooms, J. Geophys. Res., 97, 2295-2308 (1992)
[11] Jackson, G. A., Simulating chemosensory responses of marine microorganisms, Limnol. Oceanogr., 32, 6, 1253-1266 (1987)
[12] Jackson, G. A., Simulation of bacterial attraction and adhesion to falling particles in an aquatic environment, Limnol. Oceanogr., 34, 3, 514-530 (1989)
[13] Jackson, G. A., A model of the formation of marine algal flocks by physical coagulation processes, Deep-Sea Res., 37, 1197-1211 (1990)
[14] Kiørboe, T., Formation and fate of marine snowsmall-scale processes with large-scale implications, Sci. Mar., 655, Suppl. 2, 57-71 (2001)
[15] Kiørboe, T.; Hansen, J. L.S.; Alldredge, A. L.; Jackson, G. A., Sedimentation of phytoplankton during a diatom bloomrates and mechanisms, J. Mar. Res., 54, 1123-1148 (1996)
[16] Kiørboe, T.; Lundsgaard, C.; Olesen, M.; Hansen, J. L.S., Aggregation and sedimentation processes during a spring phytoplankton blooma field experiment to test coagulation theory, J. Mar. Res., 52, 297-323 (1994)
[17] Kiørboe, T.; Tiselius, P.; Mitchell-Innes, B.; Hansen, J. L.S.; Visser, A. W.; Mari, X., Intensive aggregate formation with low vertical flux during an upwelling-induced diatom bloom, Limnol. Oceanogr., 43, 104-116 (1998)
[18] Mague, T. H.; Friberg, E. D.; Hughes, J.; Morris, I., Extracellular release of carbon by marine phytoplankton; a physiological approach, Limnol. Oceanogr., 25, 262-279 (1980)
[19] McCave, I. N., Size spectra and aggregation of suspended particles in the deep ocean, Deep-Sea Res., 31, 329-352 (1984)
[20] Mogilner, A.; Keshet, E., A nonlocal model for a swarm, J. Math. Biol., 38, 534-570 (1999) · Zbl 0940.92032
[21] D. Morale, et al., An interacting particle system modelling aggregation behavior: from individuals to populations, J. Math. Biol. 2004, in press.; D. Morale, et al., An interacting particle system modelling aggregation behavior: from individuals to populations, J. Math. Biol. 2004, in press.
[22] A. Pazy, Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences, vol. 119, Springer, New York, 1983.; A. Pazy, Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences, vol. 119, Springer, New York, 1983. · Zbl 0516.47023
[23] Riebesel, U.; Wolf-Gladrow, D. A., The relationship between physical aggregation of phytoplankton and particle fluxa numerical model, Deep-Sea Res., 39, 1085-1102 (1992)
[24] Spero, H. J., Chemosensory capabilities in the phagotrophic dinoflagellate Gymnodinium fungiforme, J. Phycol., 21, 181-184 (1985)
[25] Spero, H. J.; Morée, M., Phagotrophic feeding and its importance to the life cycle of the holozoic dinoflagellate, Gymnodinium fungiforme, J. Phycol., 17, 43-51 (1981)
[26] A.S. Sznitman, Topics in propagation of chaos, in: P.L. Hennequin (Ed.), Ecole d’Eté de Probabilités de Saint-FlourXIX, Lecture Notes in Mathematics, 1989, vol. 1464, Springer, Berlin, Heidelberg, New York, 1991, pp. 165-251.; A.S. Sznitman, Topics in propagation of chaos, in: P.L. Hennequin (Ed.), Ecole d’Eté de Probabilités de Saint-FlourXIX, Lecture Notes in Mathematics, 1989, vol. 1464, Springer, Berlin, Heidelberg, New York, 1991, pp. 165-251. · Zbl 0732.60114
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.