×

Boundary-value problem for density-velocity model of collective motion of organisms. (English) Zbl 1146.35047

Summary: The collective motion of organisms is observed at almost all levels of biological systems. In this paper the density-velocity model of the collective motion of organisms is analyzed. This model consists of a system of nonlinear parabolic equations, a forced Burgers equation for velocity and a mass conservation equation for density. These equations are supplemented with the Neumann boundary conditions for the density and the Dirichlet boundary conditions for the velocity. The existence, uniqueness and regularity of solution for the density-velocity problem is proved in a bounded 1D domain. Moreover, a priori estimates for the solutions are established, and existence of an attractor is proved. Finally, some numerical approximations for asymptotical behavior of the density-velocity model are presented.

MSC:

35K50 Systems of parabolic equations, boundary value problems (MSC2000)
35K55 Nonlinear parabolic equations
35B40 Asymptotic behavior of solutions to PDEs
92C15 Developmental biology, pattern formation
Full Text: DOI

References:

[1] Adioui, M.; Arino, O.; Smith, W. V.; Treuil, J. P., A mathematical analysis of a fish school model, J. Differential Equations, 188, 406-446 (2003) · Zbl 1028.34053
[2] Adioui, M.; Arino, O.; El Saadi, N., A nonlocal model of phytoplankton aggregation, Nonlinear Anal. Real., 6, 593-607 (2005) · Zbl 1077.35059
[3] Babak, P.; Magnusson, K. G.; Sigurdsson, S., Dynamics of group formation in collective motion of organisms, Math. Med. Biol., 21, 269-292 (2004) · Zbl 1071.92046
[4] Bertozzi, A. L.; Laurent, T., Finite-time blow-up of solutions of an aggregation equation in \(R^n\), Comm. Math. Phys., 274, 717-735 (2007) · Zbl 1132.35392
[5] Birnir, B., An ODE model of the motion of pelagic fish, J. Stat. Phys., 128, 535-568 (2007) · Zbl 1115.92063
[6] Burger, M.; Capasso, V.; Morale, D., On an aggregation model with long and short range interactions, Nonlinear Anal. Real., 8, 939-958 (2007) · Zbl 1188.92040
[7] Chowdhury, D.; Schadschneider, A.; Nishinari, K., Physics of transport and traffic phenomena in biology: From molecular motors and cells to organisms, Phys. Life Rev., 2, 318-352 (2005)
[8] Chueshov, I. D., Introduction to the Theory of Infinite-Dimensional Dissipative Systems (2002), ACTA Scientific Publishing House: ACTA Scientific Publishing House Kharkiv, Ukraine · Zbl 0948.34035
[9] Dautray, R.; Lions, J.-L., Mathematical Analysis and Numerical Methods for Science and Technology. Vol. 2: Functional Variational Methods (1988), Springer-Verlag: Springer-Verlag Berlin · Zbl 0664.47001
[10] Dautray, R.; Lions, J.-L., Mathematical Analysis and Numerical Methods for Science and Technology. Vol. 5: Evolution Problems I (1992), Springer-Verlag: Springer-Verlag Berlin · Zbl 0755.35001
[11] D’Orsogna, M. R.; Chuang, Y. L.; Bertozzi, A. L.; Chayes, L. S., Self-propelled particles with soft-core interactions: Patterns, stability, and collapse, Phys. Rev. Lett., 96, 104302 (2006)
[12] Eftimie, R.; de Vries, G.; Lewis, M. A., Complex spatial group patterns result from different animal communication mechanisms, Proc. Natl. Acad. Sci. USA, 104, 6974-6979 (2007) · Zbl 1156.92334
[13] Eftimie, R.; de Vries, G.; Lewis, M. A.; Lutscher, F., Modeling group formation and activity patterns in self-organizing collectives of individuals, Bull. Math. Biol., 69, 1537-1565 (2007) · Zbl 1298.92121
[14] Lega, J.; Passot, T., Hydrodynamics of bacterial colonies, Nonlinearity, 20, C1-C16 (2007) · Zbl 1115.92059
[15] Mogilner, A.; Edelstein-Keshet, L., A non-local model for a swarm, J. Math. Biol., 38, 534-570 (1999) · Zbl 0940.92032
[16] Mogilner, A.; Edelstein-Keshet, L.; Bent, L.; Spiroz, A., Mutual interactions, potentials, and individual distance in a social aggregation, J. Math. Biol., 47, 353-389 (2003) · Zbl 1054.92053
[17] Okubo, A., Dynamical aspects of animal grouping: swarms, schools, flocks, and herds, Adv. Biophys., 22, 1-94 (1986)
[18] Partridge, B. L., The structure and function of fish schools, Sci. Amer., 246, 90-99 (1982)
[19] Robinson, J. C., Infinite-Dimensional Dynamical Systems: An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors, Cambridge Texts Appl. Math. (2001), Cambridge University Press · Zbl 0980.35001
[20] Temam, R., Navier-Stokes Equations, Stud. Math. Appl., vol. 2 (1979), North-Holland Publishing Company: North-Holland Publishing Company Amsterdam-New York-Oxford · Zbl 0454.35073
[21] Temam, R., Infinite-Dimensional Dynamical Systems in Mechanics and Physics (1997), Springer-Verlag: Springer-Verlag New York · Zbl 0871.35001
[22] Tien, J. H.; Levin, S. A.; Rubenstein, D. I., Dynamics of fish shoals: Identifying key decision rules, Evol. Ecol. Res., 6, 555-565 (2004)
[23] Topaz, C. M.; Bertozzi, A. L., Swarming patterns in a two-dimensional kinematic model for biological groups, SIAM J. Appl. Math., 65, 152-174 (2004) · Zbl 1071.92048
[24] Topaz, C. M.; Bertozzi, A. L.; Lewis, M. A., A nonlocal continuum model for biological aggregation, Bull. Math. Biol., 68, 1601-1623 (2006) · Zbl 1334.92468
[25] Tyutyunov, Y.; Senina, I.; Arditi, R., Clustering due to acceleration in the response to population gradient: A simple self-organization model, Amer. Nat., 164, 722-735 (2004)
[26] Vicsek, T.; Czirok, A.; Farkas, I. J.; Helbing, D., Application of statistical mechanics to collective motion in biology, Phys. A, 274, 182-189 (1999)
[27] Viscido, S. V.; Parrish, J. K.; Grünbaum, D., Factors influencing the structure and maintenance of fish schools, Ecological Modelling, 206, 153-165 (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.