×

On continuous-time autoregressive fractionally integrated moving average processes. (English) Zbl 1200.62111

Summary: We consider a continuous-time autoregressive fractionally integrated moving average (CARFIMA) model, which is defined as the stationary solution of a stochastic differential equation driven by a standard fractional Brownian motion. Like the discrete-time ARFIMA model, the CARFIMA model is useful for studying time series with short memory, long memory and antipersistence. We investigate the stationarity of the model and derive its covariance structure. In addition, we derive the spectral density function of a stationary CARFIMA process.

MSC:

62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
60J70 Applications of Brownian motions and diffusion theory (population genetics, absorption problems, etc.)

Software:

longmemo

References:

[1] Abramowitz, M. and Stegun, I. (1965)., Handbook of Mathematical Functions : with Formulas , Graphs , and Mathematical Tables . New York: Dover Publications. · Zbl 0171.38503
[2] Ausloos, M. and Ivanova, K. (2001). Power-law correlations in the southern-oscillation-index fluctuations characterizing EL Niño., Phys. Rev. E 63 047201.
[3] Baillie, R. (1996). Long memory processes and fractional integration in econometrics., J. Econometrics 73 5-59. · Zbl 0854.62099 · doi:10.1016/0304-4076(95)01732-1
[4] Beran, J. (1994)., Statistics for Long-Memory Processes . New York: Chapman and Hall. · Zbl 0869.60045
[5] Beran, J. and Feng, Y. (2002). Local polynomial fitting with long-memory, short-memory and antipersistent errors., Ann. Inst. Statist. Math. 54 291-311. · Zbl 1012.62033 · doi:10.1023/A:1022469818068
[6] Beran, J., Feng, Y., Franke, G., Hess, D. and Ocker, D. (2003). Semiparametric modeling of stochastic and deterministic trends and fractional stationarity. In, Processes with Long Range Correlations : Theory and Applications (G. Rangarajan and M. Ding, eds.) 225-250. Berlin: Springer.
[7] Beran, J. and Mazzola, G. (1999). Visualizing the relationship between two time series by hierarchical smoothing models., J. Comput. Graph. Statist. 8 213-238. JSTOR: · doi:10.2307/1390634
[8] Bloomfield, P. (1992). Trends in global temperature., Climatic Change 21 1-16.
[9] Bondon, P. and Palma, W. (2007). A class of antipersistent processes., J. Time Ser. Anal. 28 261-273. · Zbl 1150.62040 · doi:10.1111/j.1467-9892.2006.00509.x
[10] Brockwell, P.J. (1993). Threshold ARMA processes in continuous-time. In, Dimension Estimation and Models (H. Tong, eds.) 170-190. River Edge, NJ, World Scientific.
[11] Brockwell, P.J. (2001). Lévy-driven CARMA processes., Ann. Inst. Statist. Math. 53 113-124. · Zbl 0995.62089 · doi:10.1023/A:1017972605872
[12] Brockwell, P.J. and Marquardt, T. (2005). Lévy-driven and fractionally integrated ARMA processes with continuous-time parameter., Statist. Sinica 15 477-494. · Zbl 1070.62068
[13] Chambers, M.J. (1996). The estimation of continuous parameter long-memory time series models., Econometric Theory 12 374-390. JSTOR: · doi:10.1017/S0266466600006642
[14] Comte, F. (1996). Simulation and estimation of long memory continuous-time models., J. Time Ser. Anal. 17 19-36. · Zbl 0836.62060 · doi:10.1111/j.1467-9892.1996.tb00262.x
[15] Comte, F. and Renault, E. (1996). Long memory continuous-time models., J. Econometrics 73 101-149. · Zbl 0856.62104 · doi:10.1016/0304-4076(95)01735-6
[16] Dittmann, I. and Granger, C.W.J. (2002). Properties of nonlinear transformations of fractionally integrated processes., J. Econometrics 110 113-133. · Zbl 1043.62071 · doi:10.1016/S0304-4076(02)00089-1
[17] Duncan, T.E., Hu, Y. and Pasik-Duncan, B. (2000). Stochastic calculus for fractional Brownian motion. I. Theory., SIAM J. Control Optim. 38 582-612. · Zbl 0947.60061 · doi:10.1137/S036301299834171X
[18] Feller, W. (1968)., An Introduction to Probability Theory and Its Applications . 1 . New York: Wiley. · Zbl 0155.23101
[19] Granger, C.W.J. and Joyeux, R. (1980). An introduction to long memory time series models and fractional differencing., J. Time Ser. Anal. 1 15-29. · Zbl 0503.62079 · doi:10.1111/j.1467-9892.1980.tb00297.x
[20] Gripenberg, G. and Norros, I. (1996). On the prediction of fractional Brownian motion., J. Appl. Probab. 33 400-410. JSTOR: · Zbl 0861.60049 · doi:10.2307/3215063
[21] Hosking, J.R.M. (1981). Fractional differencing., Biometrika 68 165-176. JSTOR: · Zbl 0464.62088 · doi:10.1093/biomet/68.1.165
[22] Karatzas, I. and Shreve, S.E. (1991)., Brownian Motion and Stochastic Calculus . New York: Springer. · Zbl 0734.60060
[23] Karuppiah, J. and Los, C.A. (2000). Wavelet multiresolution analysis of high-frequency FX rates. Summary 1997, Working paper, Adelaide Univ., Australia.
[24] Kolmogorov, A.N. (1941). The local structure of turbulence in incompressible viscous liquid for very large Reynold’s numbers., C. R. ( Doklady ) Acad. Sci. URSS ( N.S. ) 30 301-305. Reprinted in Turbulence : Classic Papers on Statistical Theory (S.K. Friedlander and L. Topper, 1961). New York: Interscience Publishers. · Zbl 0025.37602
[25] Mandelbrot, B.B. and Van Ness, J.W. (1968). Fractional Brownian motions, fractional noises and applications., SIAM Rev. 10 422-137. JSTOR: · Zbl 0179.47801 · doi:10.1137/1010093
[26] Metzler, R. (2002). Antipersistent binary time series., J. Phys. A : Math. Gen. 35 721-730. · Zbl 1038.82067 · doi:10.1088/0305-4470/35/3/316
[27] Norros, I., Valkeila, E. and Virtamo, J. (1999). An elementary approach to Girsanov formula and other analytical results on fractional Brownian motions., Bernoulli 5 571-587. · Zbl 0955.60034 · doi:10.2307/3318691
[28] Otway, T.H. (1995). Records of the florentine proveditori degli cambiatori: An example of an antipersistent time series in economics., Chaos , Solitons , and Fractals 5 103-107. · Zbl 0829.90036 · doi:10.1016/0960-0779(94)00209-9
[29] Peters, E.E. (1994)., Fractal Market Analysis : Applying Chaos Theory to Investment and Economics . New York: Wiley.
[30] Priestley, M.B. (1981)., Spectral Analysis and Time Series . New York: Academic Press. · Zbl 0537.62075
[31] Ray, B.K. and Tsay, R.S. (1997). Bandwidth selection for kernel regression with long-range dependent errors., Biometrika 84 791-802. JSTOR: · Zbl 1090.62536 · doi:10.1093/biomet/84.4.791
[32] Robinson, P.M. (1994). Time series with strong dependence. In, Advances in Econometrics , 6th World Congress 1 (C.A. Sims, eds.) 47-95. Cambridge: Cambridge Univ. Press.
[33] Shiryaev, A.N. (1999)., Essentials of Stochastic Finance : Facts , Models , Theory . River Edge, NJ. World Scientific. · Zbl 0926.62100
[34] Simonsen, I. (2003). Measuring anti-correlations in the nordic electricity spot market by wavelets., Phys. A 322 597-606. · Zbl 1017.91026 · doi:10.1016/S0378-4371(02)01938-6
[35] Sowell, F. (1992). Modeling long-run behaviour with the fractional ARMA Model., J. Monetary Econ. 29 277-302.
[36] Taqqu, M.S. (2003). Fractional Brownian motion and long-range dependence. In, Theory and Applications of Long-Range Dependence (P. Doukhan, G. Oppenheimer and M.S. Taqqu, eds.) 5-42. Boston: Birkh ä user. · Zbl 1039.60041
[37] Tsai, H. and Chan, K.S. (2005). Maximum likelihood estimation of linear continuous-time long memory processes with discrete time data., J. Roy. Statist. Soc. Ser. B 67 703-716. JSTOR: · Zbl 1101.62080 · doi:10.1111/j.1467-9868.2005.00522.x
[38] Tsai, H. and Chan, K.S. (2005). Quasi-maximum likelihood estimation for a class of continuous-time long-memory processes., J. Time Ser. Anal. 26 691-713. · Zbl 1091.62090 · doi:10.1111/j.1467-9892.2005.00422.x
[39] Tsai, H. and Chan, K.S. (2005). Temporal aggregation of stationary and non-stationary continuous-time processes., Scand. J. Statist. 32 583-597. · Zbl 1092.62096 · doi:10.1111/j.1467-9469.2005.00455.x
[40] Viano, M.C., Deniau, C. and Oppenheim, G. (1994). Continuous-time fractional ARMA processes., Statist. Probab. Lett. 21 323-336. · Zbl 0809.62085 · doi:10.1016/0167-7152(94)00015-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.