×

Lattice surgery translation for quantum computation. (English) Zbl 1512.81027

Summary: In this paper we outline a method for a compiler to translate any non fault tolerant quantum circuit to the geometric representation of the lattice surgery error-correcting code using inherent merge and split operations. Since the efficiency of state distillation procedures has not yet been investigated in the lattice surgery model, their translation is given as an example using the proposed method. The resource requirements seem comparable or better to the defect-based state distillation process, but modularity and eventual implementability allow the lattice surgery model to be an interesting alternative to braiding.

MSC:

81P68 Quantum computation
68Q09 Other nonclassical models of computation
68Q12 Quantum algorithms and complexity in the theory of computing

Software:

GitHub

References:

[1] Gaitan F 2008 Quantum Error Correction and Fault Tolerant Quantum Computing (Boca Raton, FL: CRC Press) · Zbl 1167.81002 · doi:10.1201/b15868
[2] Lidar D A and Brun T A (ed) 2013 Quantum Error Correction (Cambridge: Cambridge University Press) · doi:10.1017/CBO9781139034807
[3] Gottesman D 2010 An Introduction to Quantum Error Correction and Fault-Tolerant Quantum Computation, Quantum Information Science and Its Contributions to Mathematics, Proceedings of Symposia in Applied Mathematics 68 13-58 (Providence, RI: American Mathematics Society) · Zbl 1211.81043 · doi:10.1090/psapm/068/2762145
[4] Devitt S J, Stephens A M, Munro W J and Nemoto K 2013 Requirements for fault-tolerant factoring on an atom-optics quantum computer Nat. Commun.4 2524 · doi:10.1038/ncomms3524
[5] Ahsan M, Van Meter R and Kim J 2016 Designing a million-qubit quantum computer using resource performance simulator JETC12 39 · doi:10.1145/2830570
[6] Li Y, Humphreys P C, Mendoza G J and Benjamin S C 2015 Resource costs for fault-tolerant linear optical quantum computing Phys. Rev. X 5 041007 · doi:10.1103/PhysRevX.5.041007
[7] Kitaev A Y 2003 Fault-tolerant quantum computation by anyons Ann. Phys., NY303 2-30 · Zbl 1012.81006 · doi:10.1016/S0003-4916(02)00018-0
[8] Dennis E, Kitaev A, Landahl A and Preskill J 2002 Topological quantum memory J. Math. Phys.43 4452 · Zbl 1060.94045 · doi:10.1063/1.1499754
[9] Fowler A G, Stephens A M and Groszkowski P 2009 High threshold universal quantum computation on the surface code Phys. Rev. A 80 052312 · doi:10.1103/PhysRevA.80.052312
[10] Fowler A G, Mariantoni M, Martinis J M and Cleland A N 2012 Surface codes: towards practical large-scale quantum computation Phys. Rev. A 86 032324 · doi:10.1103/PhysRevA.86.032324
[11] Raussendorf R, Harrington J and Goyal K 2007 Topological fault-tolerance in cluster state quantum computation New J. Phys.9 199 · doi:10.1088/1367-2630/9/6/199
[12] Bombin H and Martin-Delgato M A 2007 Optimal resources for topological 2D stabilizer codes: comparative study Phys. Rev. A 76 012305 · doi:10.1103/PhysRevA.76.012305
[13] Wang D S, Fowler A G, Stephens A M and Hollenberg L C L 2010 Threshold error rates for the toric and surface codes Quantum Inf. Comput.10 456 · Zbl 1237.81057
[14] Bombin H, Andrist R S, Ohzeki M, Katzgraber H G and Martin-Delgato M A 2012 Strong resilience of topological codes to depolarization Phys. Rev. X 2 021004 · doi:10.1103/PhysRevX.2.021004
[15] Stephens A M 2014 Fault-tolerant thresholds for quantum error correction with the surface code Phys. Rev. A 89 022321 · doi:10.1103/PhysRevA.89.022321
[16] Fujii K 2015 Quantum Computation with Topological Codes: From Qubits to Topological Fault-Tolerance (Berlin: Springer) · Zbl 1339.81005 · doi:10.1007/978-981-287-996-7
[17] Jones N C, Van Meter R, Fowler A G, McMahon P L, Kim J, Ladd T D and Yamamoto Y 2012 A layered architecture for quantum computing using quantum dots Phys. Rev. X 2 031007 · doi:10.1103/physrevx.2.031007
[18] DiVincenzo D P 2009 Fault-tolerant architectures for superconducting qubits Phys. Scr.T137 014020 · doi:10.1088/0031-8949/2009/T137/014020
[19] Monroe C, Raussendorf R, Ruthven A, Brown K R, Maunz P, Duan L-M and Kim J 2014 Large scale modular quantum computer architecture with atomic memory and photonic interconnects Phys. Rev. A 89 022317 · doi:10.1103/PhysRevA.89.022317
[20] Nemoto K, Trupke M, Devitt S J, Stephens A M, Buczak K, Nobauer T, Everitt M S, Schmiedmayer J and Munro W J 2013 Photonic architecture for scalable quantum information processing in NV-diamond Phys. Rev. X 4 031022 · doi:10.1103/PhysRevX.4.031022
[21] Lekitsch B, Weidt S, Fowler A G, Mølmer K, Devitt S J, Wunderlich C and Hensinger W K 2015 Blueprint for a microwave ion trap quantum computer arXiv:1508.00420
[22] Hill C D, Peretz E, Hile S J, House M G, Fuechsle M, Rogge S, Simmons M Y and Hollenberg L C L 2015 A surface code quantum computer in silicon Sci. Adv.1 e1500707 · doi:10.1126/sciadv.1500707
[23] Devitt S J, Fowler A G, Tilma T, Munro W J and Nemoto K 2010 Classical processing requirements for a topological quantum computing system Int. J. Quantum Inf.8 1-27 · doi:10.1142/S021974991000637X
[24] Duclos-Cianci G and Poulin D 2010 Fast decoders for topological quantum codes Phys. Rev. Lett.104 050504 · doi:10.1103/PhysRevLett.104.050504
[25] Fowler A G and Paetznick A 2013 Quantum circuit optimization by topological compaction in the surface code arXiv:1304.2807
[26] Devitt S J 2014 Classical control of large-scale quantum computers RC2014 pp 26-39 · doi:10.1007/978-3-319-08494-7_3
[27] Fowler A G 2015 Minimum weight perfect matching of fault-tolerant topological quantum error correction in average O (1) parallel time Quantum Inf. Comput.15 145-58
[28] Fowler A G and Devitt S J 2012 A bridge to lower overhead quantum computation arXiv:1209.0510
[29] Paler A, Devitt S J and Fowler A G 2016 Synthesis of arbitrary quantum circuits to topological assembly Sci. Rep.6 30600 · doi:10.1038/srep30600
[30] Paler A, Polian I, Nemoto K and Devitt S J 2015 A compiler for fault-tolerant high level quantum circuits arxiv:1509.02004
[31] Fowler A G, Devitt S J and Jones C 2013 Surface code implementation of block code state distillation Sci. Rep.3 1939 · doi:10.1038/srep01939
[32] Bravyi S B and Kitaev A Y 2001 Quantum codes on a lattice with boundary Quantum Comput. Comput.2 43
[33] Horsman C, Fowler A G, Devitt S J and Van Meter R 2012 Surface code quantum computing by lattice surgery New J. Phys.14 123011 · Zbl 1448.81240 · doi:10.1088/1367-2630/14/12/123011
[34] Bravyi S B and Kitaev A Y 2005 Universal quantum computation with ideal clifford gates and noisy ancillas Phys. Rev. A 71 022316 · Zbl 1227.81113 · doi:10.1103/PhysRevA.71.022316
[35] Calderbank A R and Shor P W 1996 Good quantum error-correcting codes exist Phys. Rev. A 54 1098-105 · Zbl 07918813 · doi:10.1103/PhysRevA.54.1098
[36] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press) · Zbl 1049.81015
[37] Meier A M, Eastin B and Knill E 2013 Magic-state distillation with the four-qubit code Quant. Inf. Comp.13 195-209
[38] Bravyi S and Haah J 2012 Magic-state distillation with low overhead Phys. Rev. A 86 052329 · doi:10.1103/PhysRevA.86.052329
[39] Jones C 2013 Multilevel distillation of magic states for quantum computing Phys. Rev. A 87 042305 · doi:10.1103/PhysRevA.87.042305
[40] Paler A and Devitt S J 2016 Verification of topological quantum circuits (in preparation)
[41] Browne D E and Rudolph T 2004 Resource-efficient linear optical quantum computation Phys. Rev. Lett.95 010501 · doi:10.1103/PhysRevLett.95.010501
[42] Beenakker C W J, DiVincenzo D P, Emary C and Kindermann M 2004 Charge detection enables free-electron quantum computation Phys. Rev. Lett.93 020501 · doi:10.1103/PhysRevLett.93.020501
[43] Raussendorf R and Briegel H J 2001 A one-way quantum computer Phys. Rev. Lett.86 5188-91 · doi:10.1103/PhysRevLett.86.5188
[44] Briegel H J, Browne D E, Dür W, Raussendorf R and Van den Nest M 2009 Measurement-based quantum computation Nat. Phys.5 19-26 · doi:10.1038/nphys1157
[45] O’Gorman J and Campbell E T 2016 Quantum computation with realistic magic state factories arXiv:1605.07197
[46] Campbell E T and Howard M 2016 A unified framework for magic state distillation and multi-qubit gate-synthesis with reduced resource cost arXiv:1606.01904
[47] Campbell E T and O’Gorman J 2016 An efficient magic state approach to small angle rotations Quantum Sci. Technol.1 015007 · doi:10.1088/2058-9565/1/1/015007
[48] Nagayama S, Satoh T and Van Meter R 2016 State injection, lattice surgery and dense packing of deformation-based surface code arxiv:1606.06072
[49] Delfosse N, Iyer P and Poulin D 2016 Generalized surface codes and packing of logical qubits arxiv:1606.07116
[50] Yao X et al 2012 Experimental demonstration of topological error correction Nature482 489-94 · doi:10.1038/nature10770
[51] Barends R et al 2014 Superconducting quantum circuits at the surface code threshold for fault tolerance Nature508 500-3 · doi:10.1038/nature13171
[52] Hornibrook J M et al 2015 Cryogenic control architecture for large-scale quantum computing Phys. Rev. Appl.3 024010 · doi:10.1103/PhysRevApplied.3.024010
[53] Fowler A G, Whiteside A C and Hollenberg L C L 2012 Towards practical classical processing for the surface code: timing analysis Phys. Rev. A 86 042313 · doi:10.1103/PhysRevA.86.042313
[54] Kliuchnikov V, Maslov D and Mosca M 2012 Fast and efficient exact synthesis of single qubit unitaries generated by clifford and T-gates Quantum Info. Comput.13 607-30
[55] Giles B and Selinger P 2013 Exact synthesis of multiqubit clifford + T circuits Phys. Rev. A 87 032332 · doi:10.1103/PhysRevA.87.032332
[56] Bocharov A, Roetteler M and Svore K M 2015 Efficient synthesis of probabilistic quantum circuits with fallback Phys. Rev. A 91 052317 · doi:10.1103/PhysRevA.91.052317
[57] Ross N J and Selinger P 2014 Optimal ancilla-free clifford + T approximation of Z-rotations arXiv:1403.2975
[58] Häner T, Steiger D S, Svore K and Troyer M 2016 A software methodology for compiling quantum programs arXiv:1604.01401
[59] Paler A, Devitt S J, Nemoto K and Polian I 2014 Mapping of topological quantum circuits to physical hardware Sci. Rep.4 4657 · doi:10.1038/srep04657
[60] Hordern E 1986 Sliding Piece Puzzles (Oxford: Oxford University Press)
[61] Fowler A G 2012 Time optimal quantum computation arxiv:1210.4626
[62] Gottesman D 1999 The Heisenberg Representation of Quantum Computers Proc. 22nd Int. Colloquium on Group Theoretical Methods in Physics ed S P Corney et al (Cambridge, MA: International Press) pp 32-43 · Zbl 0977.81005
[63] Aliferis P 2007 Level Reduction and the quantum threshold theorem PhD Thesis Caltech
[64] Jones N C 2013 Logic synthesis for fault-tolerant quantum computers PhD Thesis Stanford University
[65] Fowler A G 2012 Low overhead surface code logical hadamard Quantum Inf. Comput.12 970 · Zbl 1263.81113
[66] Łodyga J, Mazurek P, Grudka A and Horodecki M 2015 Simple scheme for encoding and decoding a qubit in unknown state for various topological codes Sci. Rep.5 8975 · doi:10.1038/srep08975
[67] Li Y 2015 A magic state’s fidelity can be superior to the operations that created it New J. Phys.17 023037 · Zbl 1452.81054 · doi:10.1088/1367-2630/17/2/023037
[68] Gitlab Repository to this work https://github.com/herr-d/LS_translation
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.