×

An optimal dissipative encoder for the toric code. (English) Zbl 1451.81140

Summary: We consider the problem of preparing specific encoded resource states for the toric code by local, time-independent interactions with a memoryless environment. We propose the construction of such a dissipative encoder which converts product states to topologically ordered ones while preserving logical information. The corresponding Liouvillian is made up of four local Lindblad operators. For a qubit lattice of size \(L\times L\), we show that this process prepares encoded states in time \(O(L)\), which is optimal. This scaling compares favorably with known local unitary encoders for the toric code which take time of order \(\Omega (L^2)\) and require active time-dependent control.

MSC:

81P65 Quantum gates
81P68 Quantum computation
81P73 Computational stability and error-correcting codes for quantum computation and communication processing

References:

[1] Aguado M and Vidal G 2008 Entanglement renormalization and topological order Phys. Rev. Lett.100 070404 · doi:10.1103/PhysRevLett.100.070404
[2] Bardyn C-E, Baranov M A, Kraus C V, Rico E, Imamoglu A, Zoller P and Diehl S 2013 Topology by dissipation arXiv:1302.5135
[3] Bravyi S, Hastings M B and Verstraete F 2006 Lieb-Robinson bounds and the generation of correlations and topological quantum order Phys. Rev. Lett.97 050401 · doi:10.1103/PhysRevLett.97.050401
[4] Brown B, Son W, Kraus C, Fazio R and Vedral V 2011 Generating topological order from a two-dimensional cluster state using a duality mapping New J. Phys.13 065010 · doi:10.1088/1367-2630/13/6/065010
[5] Dennis E, Kitaev A, Landahl A and Preskill J 2002 Topological quantum memory J. Math. Phys.43 4452-505 · Zbl 1060.94045 · doi:10.1063/1.1499754
[6] Diehl S, Micheli A, Kantian A, Kraus B, Büchler H P and Zoller P 2008 Quantum states and phases in driven open quantum systems with cold atoms Nature Phys.4 878-83 · doi:10.1038/nphys1073
[7] Grudka A, Horodecki M, Horodecki P, Mazurek P, Pankowski L and Przysiezna A 2012 Long distance quantum communication over noisy networks without quantum memory arXiv:1202.1016
[8] Kastoryano M J, Wolf M M and Eisert J 2013 Precisely timing dissipative quantum information processing Phys. Rev. Lett.110 110501 · doi:10.1103/PhysRevLett.110.110501
[9] Kitaev A Y 2003 Fault-tolerant quantum computation by anyons Ann. Phys.303 2-30 · Zbl 1012.81006 · doi:10.1016/S0003-4916(02)00018-0
[10] König R and Pastawski F 2013 Generating topological order: no speedup by dissipation arXiv:1310.1037
[11] Kraus B, Büchler H P, Diehl S, Kantian A, Micheli A and Zoller P 2008 Preparation of entangled states by quantum Markov processes Phys. Rev. A 78 042307 · doi:10.1103/PhysRevA.78.042307
[12] Marvian I 2013 personal communication
[13] Pastawski F, Clemente L and Cirac J I 2011 Quantum memories based on engineered dissipation Phys. Rev. A 83 012304 · doi:10.1103/PhysRevA.83.012304
[14] Perez-Garcia D, Verstraete F, Cirac J I and Wolf M M 2008 PEPS as unique ground states of local Hamiltonians Quantum Inform. Comput.8 650-63 · Zbl 1154.81323
[15] Ticozzi F and Viola L 2012 Stabilizing entangled states with quasi-local quantum dynamical semigroups Phil. Trans. R. Soc. A 370 5259-69 · Zbl 1353.81028 · doi:10.1098/rsta.2011.0485
[16] Ticozzi F and Viola L 2014 Steady-state entanglement by engineered quasi-local Markovian dissipation Quantum Inform. Comput.14 0265-94
[17] Tomadin A, Diehl S, Lukin M D, Rabl P and Zoller P 2012 Reservoir engineering and dynamical phase transitions in optomechanical arrays Phys. Rev. A 86 033821 · doi:10.1103/PhysRevA.86.033821
[18] Verstraete F, Wolf M M and Cirac J I 2009 Quantum computation and quantum-state engineering driven by dissipation Nature Phys.5 633-6 · doi:10.1038/nphys1342
[19] Wilde M 2013 Quantum Information Theory (Cambridge: Cambridge University Press) · Zbl 1296.81001 · doi:10.1017/CBO9781139525343
[20] Wolf M and Cirac J I 2008 Dividing quantum channels Commun. Math. Phys.279 147 · Zbl 1149.81007 · doi:10.1007/s00220-008-0411-y
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.