×

Permutationally invariant codes for quantum error correction. (English) Zbl 1089.94046

The well-developed class of the quantum error correction codes is known as “additive codes”, which arise as subspaces stabilized by Abelian subgroups of the Pauli group. In this paper several codes of the much less investigated “non-additive” class are discussed. Namely, these are the binary codes associated with the action of non-Abelian group. More precisely, the authors concentrate their attention on the codes on which the symmetrie group acts trivially and call it permutationally invariant codes. These codes require at least 7 qubits to correct all one-bit errors. Authors found two distinct 7-bit codes of this type. Also they investigated a large family of permutationally invariant 9-bit codes and found boundaries of its power in the area of two-bit error correction. It was shown that no 9-bit code can correct all two-bit errors of the form \(Z_jZ_k\) and all one-bit errors of the form \(X_k\) and \(Z_k\) at the same time, where \(X_i\) and \(Z_i\) denote the action of the \(\sigma_x\) and \(\sigma_z\) Pauli spin operators. Also it was proved that if one apply a slightly modified restriction on the simultaneously one-bit and two-bit error correction, which require to correct all errors of the form \(X_k\) and all errors of the form \(X_jX_k\) and \(Z_jZ_k\), it can be achieved using the simple 5-bit repetition code.

MSC:

94B60 Other types of codes
81P68 Quantum computation

References:

[1] Bacon, D.; Kempe, J.; Lidar, D. A.; Whaley, K. B., Universal fault-tolerant computation on decoherence-free subspace, Phys. Rev. Lett., 85, 1758-1761 (2000)
[2] Bacon, D.; Kempe, J.; DiVincenzo, D. P.; Lidar, D. A.; Whaley, K. B., Encoded universality in physical implementations of a quantum computer, (Clark, R., Proceedings of the First International Conference on Experimental Implementation of Quantum Computation (2001), Rinton Press: Rinton Press Princeton, NJ), 257-264, quant-ph/0102140.
[3] Bennett, C. H.; DiVincenzo, D. P.; Smolin, J. A.; Wootters, W. K., Mixed-state entanglement and quantum error correction, Phys. Rev. A, 54, 3824-3851 (1996) · Zbl 1371.81041
[4] Calderbank, R.; Rains, E. M.; Shor, P. W.; Sloane, N. J.A., Quantum error correction and orthogonal geometry, Phys. Rev. Lett., 78, 405-408 (1997) · Zbl 1005.94541
[5] Calderbank, R.; Rains, E. M.; Shor, P. W.; Sloane, N. J.A., Quantum error correction via codes over GF(4), IEEE Trans. Informat. Theory, 44, 1369-1387 (1998) · Zbl 0982.94029
[6] D. Gottesman, Stabilizer Codes and Quantum Error Correction, Caltech Ph.D. Thesis, 2001; D. Gottesman, Stabilizer Codes and Quantum Error Correction, Caltech Ph.D. Thesis, 2001
[7] Gottesman, D., Theory of fault-tolerant quantum computation, Phys. Rev. A, 57, 127-137 (1998)
[8] M. Hamermesh, Group Theory, Addison-Wesley Publishing, Reading, MA, 1962; reprinted by Dover publications, NY, 1990; M. Hamermesh, Group Theory, Addison-Wesley Publishing, Reading, MA, 1962; reprinted by Dover publications, NY, 1990
[9] Kempe, J.; Bacon, D.; DiVincenzo, D. P.; Whaley, K. B., Encoded universality from a single physical interaction, Quantum Informat. Comput., 1, 33-55 (2001) · Zbl 1187.81069
[10] Kempe, J.; Bacon, D.; Lidar, D. A.; Whaley, K. B., Theory of decoherence-free fault-tolerant universal quantum computation, Phys. Rev. A, 63, 042307. (2001)
[11] Kitaev, A. Y., Fault-tolerant quantum computation by anyons, Ann. Phys., 303, 2-30 (2003) · Zbl 1012.81006
[12] Klappenecker, A.; Rötteler, M., Beyond stabilizer codes I: nice error bases; II: Clifford codes, IEEE Trans. Informat. Theory, 48, 2392-2399 (2002) · Zbl 1062.94067
[13] Klappenecker, A., Clifford codes, (Brylinski, R.; Chen, G., Mathematics of Quantum Computation (2002), CRC Press), 253-273 · Zbl 1020.81008
[14] E. Knill, Group Representations, Error Bases and Quantum Codes, quant-ph/9608048; E. Knill, Group Representations, Error Bases and Quantum Codes, quant-ph/9608048
[15] Knill, E.; Laflamme, R., A theory of quantum error-correcting codes, Phys. Rev. A, 55, 900-911 (1997)
[16] Knill, E.; Laflamme, R.; Viola, L., Theory of quantum error correction for general noise, Phys. Rev. Lett., 84, 2525-2528 (2000) · Zbl 0956.81008
[17] D. Lidar, B. Whaley, Decoherence-free subspaces and subsystems, in: F. Benatti, R. Floreanini (Eds.), Irreversible Quantum Dynamics, pp. 83-120 (Springer Lecture Notes in Physics 622, 2003), quant-ph/0301032; D. Lidar, B. Whaley, Decoherence-free subspaces and subsystems, in: F. Benatti, R. Floreanini (Eds.), Irreversible Quantum Dynamics, pp. 83-120 (Springer Lecture Notes in Physics 622, 2003), quant-ph/0301032 · Zbl 1046.81011
[18] Nielsen, M. A.; Chuang, I. L., Quantum Computation and Quantum Information (2000.), Cambridge University Press · Zbl 1049.81015
[19] Pollatsek, H., Quantum error correction: classic group theory meets a quantum challenge, Amer. Math. Monthly, 108, 932-962 (2001) · Zbl 1023.81005
[20] Rains, E. M.; Hardin, R. H.; Shor, P. W.; Sloane, N. J.A., A nonadditive quantum code, Phys. Rev. Lett., 79, 953-954 (1997)
[21] V.P. Roychowdhury, F. Vatan, On the existence of nonadditive quantum codes, Quantum computing and quantum communications 325-336, Lecture Notes in Comput. Sci., 1509, (Springer, Berlin, 1999), quant-ph/9710031; V.P. Roychowdhury, F. Vatan, On the existence of nonadditive quantum codes, Quantum computing and quantum communications 325-336, Lecture Notes in Comput. Sci., 1509, (Springer, Berlin, 1999), quant-ph/9710031
[22] Ruskai, M. B., Pauli exchange errors in quantum computation, Phys. Rev. Lett., 85, 194-197 (2000), quant-ph/9906114.
[23] Sternberg, S., Group Theory and Physics (1994.), Cambridge University Press · Zbl 0816.53002
[24] Zanardi, P., Stabilizing quantum information, Phys. Rev. A, 63, 012301 (2001)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.