×

Topological quantum memory. Quantum information theory. (English) Zbl 1060.94045

Summary: We analyze surface codes, the topological quantum error-correcting codes introduced by Kitaev. In these codes, qubits are arranged in a two-dimensional array on a surface of nontrivial topology, and encoded quantum operations are associated with nontrivial homology cycles of the surface. We formulate protocols for error recovery, and study the efficacy of these protocols. An order-disorder phase transition occurs in this system at a nonzero critical value of the error rate; if the error rate is below the critical value (the accuracy threshold), encoded information can be protected arbitrarily well in the limit of a large code block. This phase transition can be accurately modeled by a three-dimensional \(\mathbb{Z}_2\) lattice gauge theory with quenched disorder. We estimate the accuracy threshold, assuming that all quantum gates are local, that qubits can be measured rapidly, and that polynomial-size classical computations can be executed instantaneously. We also devise a robust recovery procedure that does not require measurement or fast classical processing; however, for this procedure the quantum gates are local only if the qubits are arranged in four or more spatial dimensions. We discuss procedures for encoding, measurement, and performing fault-tolerant universal quantum computation with surface codes, and argue that these codes provide a promising framework for quantum computing architectures.

MSC:

94B60 Other types of codes
81P68 Quantum computation

References:

[1] DOI: 10.1103/PhysRevA.52.R2493 · doi:10.1103/PhysRevA.52.R2493
[2] DOI: 10.1103/PhysRevLett.77.793 · Zbl 0944.81505 · doi:10.1103/PhysRevLett.77.793
[3] P. W. Shor, quant-ph/9605011.
[4] A. Yu. Kitaev, ”Fault-tolerant quantum computation by anyons,” quant-ph/9707021. · Zbl 1012.81006
[5] Knill E., Proc. R. Soc. London, Ser. A 454 pp 365– (1998) · Zbl 0915.68054 · doi:10.1098/rspa.1998.0166
[6] E. Knill, R. Laflamme, and W. H. Zurek, quant-ph/9702058. · Zbl 0915.68054 · doi:10.1098/rspa.1998.0166
[7] D. Aharonov and M. Ben-Or, quant-ph/9611025;
[8] D. Aharonov and M. Ben-Or, ”Fault-tolerant quantum computation with constant error rate,” quant-ph/9906129. · Zbl 0962.68065
[9] DOI: 10.1070/RM1997v052n06ABEH002155 · Zbl 0917.68063 · doi:10.1070/RM1997v052n06ABEH002155
[10] DOI: 10.1098/rspa.1998.0167 · Zbl 0915.68051 · doi:10.1098/rspa.1998.0167
[11] J. Preskill, quant-ph/9705031. · Zbl 0915.68051 · doi:10.1098/rspa.1998.0167
[12] D. Gottesman, quant-ph/9705052.
[13] D. Gottesman, ”Fault tolerant quantum computation with local gates,” quant-ph/9903099. · Zbl 0964.81017
[14] S. B. Bravyi and A. Yu. Kitaev, ”Quantum codes on a lattice with boundary,” quant-ph/9810052.
[15] M. H. Freedman and D. A. Meyer, ”Projective plane and planar quantum codes,” quant-ph/9810055. · Zbl 0995.94037
[16] Gaćs P., J. Comput. Syst. Sci. 32 pp 15– (1986) · Zbl 0621.68038 · doi:10.1016/0022-0000(86)90002-4
[17] D. Aharonov, M. Ben-Or, R. Impagliazzo, and N. Nisan, ”Limitations of noisy reversible computation,” quant-ph/9611028.
[18] DOI: 10.1103/PhysRevLett.78.405 · Zbl 1005.94541 · doi:10.1103/PhysRevLett.78.405
[19] A. R. Calderbank, E. M. Rains, P. W. Shor, and N. J. A. Sloane, quant-ph/9605005. · Zbl 1005.94541 · doi:10.1103/PhysRevLett.78.405
[20] DOI: 10.1103/PhysRevA.54.1862 · doi:10.1103/PhysRevA.54.1862
[21] D. Gottesman, quant-ph/9604038. · doi:10.1103/PhysRevA.54.1862
[22] Einarsson T., Phys. Rev. Lett. 64 pp 1995– (1990) · Zbl 1050.81566 · doi:10.1103/PhysRevLett.64.1995
[23] DOI: 10.1103/PhysRevB.41.9377 · doi:10.1103/PhysRevB.41.9377
[24] Nishimori H., Prog. Theor. Phys. 66 pp 1169– (1981) · doi:10.1143/PTP.66.1169
[25] Gruzberg I. A., Phys. Rev. B 63 pp 104422– (2001) · doi:10.1103/PhysRevB.63.104422
[26] I. A. Gruzberg, N. Read, and A. W. W. Ludwig, cond-mat/0007254. · doi:10.1103/PhysRevB.63.104422
[27] Alford M. G., Nucl. Phys. B 384 pp 251– (1992) · doi:10.1016/0550-3213(92)90468-Q
[28] M. G. Alford, K.M. Lee, J. March-Russell, and J. Preskill, hep-th/9112038. · doi:10.1016/0550-3213(92)90468-Q
[29] A. Honecker, M. Picco, and P. Pujol, ”Nishimori point in the 2D {\(\pm\)}J random-bond Ising model,” cond-mat/00010143.
[30] F. Merz and J. T. Chalker, ”The two-dimensional random-bond Ising model, free fermions and the network model,” cond-mat/0106023.
[31] Calderbank A. R., Phys. Rev. A 54 pp 1098– (1996) · doi:10.1103/PhysRevA.54.1098
[32] A. R. Calderbank and P. W. Shor, quant-ph/9512032. · doi:10.1103/PhysRevA.54.1098
[33] Steane A., Proc. R. Soc. London, Ser. A 452 pp 2551– (1996) · Zbl 0876.94002 · doi:10.1098/rspa.1996.0136
[34] A. Steane, quant-ph/9601029. · Zbl 0876.94002 · doi:10.1098/rspa.1996.0136
[35] Nishimori H., J. Phys. Soc. Jpn. 55 pp 3305– (1986) · doi:10.1143/JPSJ.55.3305
[36] Kitatani H., J. Phys. Soc. Jpn. 61 pp 4049– (1992) · doi:10.1143/JPSJ.61.4049
[37] Edmonds J., Can. J. Math. 17 pp 449– (1965) · Zbl 0132.20903 · doi:10.4153/CJM-1965-045-4
[38] Barahona F., J. Phys. A 15 pp 673– (1982) · doi:10.1088/0305-4470/15/2/033
[39] Kawashima N., Europhys. Lett. 39 pp 85– (1997) · doi:10.1209/epl/i1997-00318-5
[40] N. Kawashima and H. Rieger, cond-mat/9612116. · doi:10.1209/epl/i1997-00318-5
[41] DOI: 10.1103/PhysRevLett.78.2252 · doi:10.1103/PhysRevLett.78.2252
[42] A. Steane, quant-ph/9611027. · doi:10.1103/PhysRevLett.78.2252
[43] D. Gottesman, ”The Heisenberg representation of quantum computers,” quant-ph/9807006. · Zbl 0977.81005
[44] DOI: 10.1103/PhysRevA.57.127 · doi:10.1103/PhysRevA.57.127
[45] D. Gottesman, quant-ph/9702029. · doi:10.1103/PhysRevA.57.127
[46] Dennis E., Phys. Rev. A 63 pp 052314– (2001) · doi:10.1103/PhysRevA.63.052314
[47] E. Dennis, quant-ph/9905027. · doi:10.1103/PhysRevA.63.052314
[48] Ogburn W., Lect. Notes Comput. Sci. 1509 pp 341– (1999) · doi:10.1007/3-540-49208-9_31
[49] M. H. Freedman, A. Kitaev, M. J. Larsen, and Z. Wang, ”Topological quantum computation,” quant-ph/0101025. · Zbl 1019.81008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.