×

Differential equations with hysteresis operators. existence of solutions, stability, and oscillations. (English) Zbl 1394.34004

From the introduction: This review is aimed at exploring ordinary differential equations with hysteresis as viewed by the contemporary nonlinear control theory. The right-hand sides of differential equations are usually treated in the nonlinear control theory as the sums of linear and nonlinear parts in the form \[ \begin{gathered} {dx\over dt}+ Ax+ b\xi(t),\\ \sigma= c^*x,\;\xi(t)= \varphi[\sigma(\tau)|^t_{\tau= 0},\,\xi_0](t),\end{gathered}\tag{1} \] where \(x\in\mathbb{R}^n\); \(A\), \(b\), and \(c\) are constant matrices of dimensions \(n\times n\), \(n\times m\), and \(n\times m\), respectively; \(\sigma\) is an \(m\)-dimensional vector; \(\varphi[\sigma(\tau)|^t_{\tau=0},\;\xi_0](t)\) is a nonlinear vector-operator, and \(\xi_0= \xi(0)\). In particular, for \(m=1\), \(b\) and \(c\) are \(n\)-dimensional vectors.
Let us consider two well-known operators of “play” \(\varphi_1[\sigma(\tau)|^t_{\tau=0}, \xi_{10}](t)\) and “stop” \(\varphi_2[\sigma(\tau)|^t_{\tau= 0},\) \(\chi_{20}](t)\) (the same operator is called the Prandtl operator in the theory of elastic-plastic deformations). It can be easily shown and it is well-known that \[ \varphi_1[\sigma(\tau)||^t_{\tau=0}, \xi_{10}](t)= \sigma(t)- \varphi_2[\sigma(\tau)|^t_{\tau=0}, \xi_{20}](t)\quad\text{for }\xi_{10}= \sigma(0)- \xi_{20}. \] Therefore, results obtained for system (1) with the “play” operator can be immediately reformulated for system (1) with the “stop” operator and vice versa.
The theory of existence and uniqueness of solutions has been thoroughly developed for differential equations with continuous hysteresis operators. In this paper, we provide the main results of this theory. In case of discontinuous dynamic systems a generalized consideration is usually used, viz. differential inclusions. No such theory is currently available for discontinuous systems with hysteresis operators. The existence of solutions for such systems is easy to prove unless there exist the so-called sets of sliding modes.
The outstanding scientists Andronov and Bautin and Feldbaum published the first mathematically rigorous results on the stability and oscillations of two-dimensional systems with hysteresis operators of the “play type and with the “non-ideal relay with dead zone” type. Herein we will provide these results and amplify them with results by Zheleztsov on the oscillations on a two-dimensional system with a “non-ideal relay” hysteresis operator and with out theorem on the global stability of similar systems with the Prandtl operator.
Yakubovich contributed remarkable to the theory of the absolute stability of multidimensional systems with hysteresis operators. In this paper, we provide one of Yakubovich’s frequency criteria with a proof, where one can get acquainted with the methods and techniques of applying Lyapunov functions and frequency theorems to the analysis of the global stability of hysteresis systems. Using the Andronov-Bautin results, we construct a counterexample to the Barabanov-Yakubovich frequency criterion.
To analyse the stabilizability of system with “play” and Prandtl operator, we provide new frequency criteria of stability an compare them with the well-known Logemann-Ryan results.
Studying oscillations in multidimensional hysteresis systems presents a complicated problem. In this paper, we demonstrate the application of one of the efficient nonlocal study methods, viz. the method of nonlocal reduction, which unifies the secon Lyapunov method and the theory of nonlocal bifuractions in two-dimensional systems. Based on this method, a frequency criterion of oscillation is derived that extends the results of A. A. Andronov, N. N. Bautin, A. A. Feldbaum, and N. A. Zheleztsov to multidimensional systems.

MSC:

34-02 Research exposition (monographs, survey articles) pertaining to ordinary differential equations
34C55 Hysteresis for ordinary differential equations
34D20 Stability of solutions to ordinary differential equations
34C25 Periodic solutions to ordinary differential equations
Full Text: DOI

References:

[1] Visintin, A., Differential Models of Hysteresis, Berlin: Springer-Verlag, 1994. · Zbl 0820.35004
[2] Visintin, A., Mathematical models of hysteresis, The Science of Hysteresis, Vol. 1: Mathematical Modeling and Applications, Berotti, G. and Mayergoyz, I.D., Eds., Amsterdam: Elsevier/Academic, 2006, pp. 1-114. · Zbl 1149.35077
[3] Filippov, A. F., Differential Equations with Discontinuous Righthand Sides, Dordrecht: Kluwer, 1988. · Zbl 0664.34001
[4] Yakubovich, V. A., Leonov, G.A., and Gelig, A.Kh., Stability of Stationary Sets in Control Systems with Discontinuous Nonlinearities, Singapore: World Scientific, 2004. · Zbl 1054.93002
[5] Andronov, A.A.; Bautin, N.N., Sur un cas dégénérée du problème général de régulation directe, C. R. (Dokl.) Acad. Sci. USSR, 46, 277-279, (1945) · Zbl 0061.19411
[6] Fel’dbaum, A.A., Simplest bang-bang automatic control systems, Avtom. Telemekh., 10, 249-260, (1949)
[7] Andronov, A.A., Vitt, A.A., and Khaikin, S.E., Teoriya kolebanii (Theory of Oscillations), Moscow: Gos. Izd. Fiz. Mat. Lit., 1959, 2nd ed. · Zbl 0085.17804
[8] Yakubovich, V.A., The conditions for absolute stability of a control system with a hysteresis-type nonlinearity, Sov. Dokl. Phys., 8, 235-237, (1963) · Zbl 0131.31703
[9] Yakubovich, V.A., The method of matrix inequalities in the theory of stability of non-linear controlled systems. III: absolute stability of systems with hysteresis non-linearities, Autom. Remote Control, 26, 577-592, (1965) · Zbl 0137.06303
[10] Yakubovich, V.A., Methods of absolute stability theory, 74-180, (1975)
[11] Barabanov, N.E.; Yakubovich, V.A., Absolute stability of control systems with one hysteresis nonlinearity, Autom. Remote Control, 40, 1713-1719, (1980) · Zbl 0458.93045
[12] Logemann, H.; Ryan, E.P., Systems with hysteresis in the feedback loop: existence, regularity and asymptotic behaviour of solutions, ESAIM: Control Optim. Calc. Var., 9, 169-196, (2003) · Zbl 1076.45004
[13] Leonov, G.A., Necessary frequency conditions for the absolute stability of nonstationary systems, Autom. Remote Control, 42, 9-13, (1981) · Zbl 0465.93054
[14] Leonov, G.A.; Filina, M.Yu., Instability and oscillations of systems with hysteretic nonlinearities, Autom. Remote Control, 44, 33-38, (1983) · Zbl 0518.93053
[15] Leonov, G.A., The nonlocal reduction method in the theory of absolute stability of nonlinear systems: I, Autom. Remote Control, 45, 45-53, (1984) · Zbl 0553.93045
[16] Leonov, G.A., Nonlocal reduction method in the theory of absolute stability of nonlinear systems: II, Autom. Remote Control, 45, 315-323, (1984) · Zbl 0563.93048
[17] Leonov, G.A.; Smirnova, V.B., Method of nonlocal reduction in stability theory, 98-106, (1984), Novosibirsk · Zbl 0569.34047
[18] Leonov, G.A.; Smirnova, V.B., Nonlocal reduction method in differential equations theory, 658-694, (1989), Singapore · Zbl 0755.34045
[19] Ewing, J.A., Experimental research in magnetism, Philos. Trans. R. Soc. London, 176, 131-159, (1885)
[20] Ishlinskii, A.Yu., Some applications of statistics in describing deformation laws, Izv. Akad. Nauk SSSR, Otd. Tekh. Nauk, 9, 583-590, (1944)
[21] Preisach, F., Über die magnetische nachwirkung, Z. Phys. A: Hadrons Nucl., 94, 277-302, (1935)
[22] Enderby, J.A., The domain model of hysteresis. part 1: independent domains, Trans. Faraday Soc., 51, 835-848, (1955)
[23] Enderby, J.A., The domain model of hysteresis. part 2: interacting domains, Trans. Faraday Soc., 52, 106-120, (1956)
[24] Prandtl, L., Ein gedankenmodell zur kinetischen theorie der festen Körper, Z. Angew. Math. Mech., 8, 85-106, (1928) · JFM 54.0847.04
[25] Everett, D.H.; Whitton, W.I., A general approach to hysteresis, Trans. Faraday Soc., 48, 749-757, (1952)
[26] Everett, D.H.; Smith, F. W., A general approach to hysteresis. part 2: development of the domain theory, Trans. Faraday Soc., 50, 187-197, (1954)
[27] Everett, D.H., A general approach to hysteresis. part 3: A formal treatment of the independent domain model of hysteresis, Trans. Faraday Soc., 50, 1077-1096, (1954)
[28] Everett, D.H., A general approach to hysteresis. part 4: an alternative formulation of the domain model, Trans. Faraday Soc., 51, 1551-1557, (1955)
[29] Jiles, D.C.; Atherton, D.L., Ferromagnetic hysteresis, IEEE Trans. Magn., 19, 2183-2185, (1983)
[30] Jiles, D.C., Introduction to Magnetism and Magnetic Materials, London: Chapman & Hall, 2015.
[31] Coleman, B.D.; Hodgdon, M.L., A constitutive relation for rate-independent hysteresis in ferromagnetically soft materials, Int. J. Eng. Sci., 24, 897-919, (1986) · Zbl 0582.73002
[32] Coleman, B.D.; Hodgdon, M.L., On a class of constitutive relations for ferromagnetic hysteresis, Arch. Ration. Mech. Anal., 99, 375-396, (1987) · Zbl 0631.73093
[33] Koiter, W.T.; Sneddon, I.N. (ed.); Hill, R. (ed.), General theorems for elastic-plastic solids, 165-221, (1960), Amsterdam
[34] The Science of Hysteresis, Berotti, G. and Mayergoyz, I.D., Eds., Amsterdam: Elsevier/Academic, 2006, Vols.1-3. · Zbl 1117.34047
[35] Models of Hysteresis, Visintin, A., Ed., Harlow: Longman, 1993.
[36] Rieder, G.; Visintin, A. (ed.), Elastic obstacles for Bloch walls, 143-157, (1993), Harlow · Zbl 0812.73012
[37] Krasnosel’skii, M.A.; Rachinskii, D.I., Invariant convex classes of states of continual relay systems, Autom. Remote Control, 55, 1405-1412, (1994) · Zbl 0854.93028
[38] Krasnoselskii, M.A.; Rachinskii, D.I.; Mayergoyz, I.D., On canonical states of continual systems of relays, Z. Angew. Math. Mech., 75, 515-522, (1995) · Zbl 0959.93001
[39] Krasnoselskii, M.A. and Pokrovskii, A.V., Systems with Hysteresis, Heidelberg: Springer-Verlag, 1989. · Zbl 0665.47038
[40] Brokate, M. and Sprekels, J., Hysteresis and Phase Transitions, New York: Springer-Verlag, 1996. · Zbl 0951.74002
[41] Rachinskii, D.I., Equivalent combinations of stops, Autom. Remote Control, 59, 1370-1378, (1998) · Zbl 1123.34312
[42] Bouc, R., Solution périodique de l’équation de la “ferrorésonance” avec hystérésis, C. R. Seances Acad. Sci. Ser. A, 263, 497-499, (1966) · Zbl 0152.42103
[43] Bouc, R., Modèle mathématique d’hystérésis. Application aux systèmes à un degré de liberté, Ph. D. Thesis, Marseille, 1969.
[44] Bouc, R., Modèle mathématique d’hystérésis, Acustica, 24, 16-25, (1971) · Zbl 0237.73020
[45] Brokate, M., Hysteresis operators, Phase Transitions and Hysteresis, Visintin, A., Ed., Lecture Notes in Math., vol. 1584, Berlin: Springer-Verlag, 1994, pp. 1-38. · Zbl 0836.35065
[46] Krejčí, P., Hysteresis, Convexity, and Dissipation in Hyperbolic Equations, Tokyo: Gakkotosho, 1996. · Zbl 1187.35003
[47] Della Torre, E., Magnetic Hysteresis, New York: Wiley, 2000.
[48] Macki, J.W.; Nistri, P.; Zecca, P., Mathematical models for hysteresis, SIAM Rev., 35, 94-123, (1993) · Zbl 0771.34018
[49] Mayergoyz, I.D., Mathematical Models of Hysteresis, New York: Springer-Verlag, 1991. · Zbl 0723.73003
[50] Mayergoyz, I.D., Mathematical Models of Hysteresis and Their Applications, Amsterdam: Elsevier/ Academic, 2003. · Zbl 0723.73003
[51] Müller, I., Six lectures on shape memory, Boundaries, Interfaces, and Transitions, Delfour, M.C., Ed., CRM Proceedings and Lecture Notes, vol. 13, Providence: Amer. Math. Soc., 1998, pp. 125-161. · Zbl 1298.34077
[52] Visintin, A., Six talks on hysteresis, 207-236, (1998) · Zbl 0918.35067
[53] Hassani, V.; Tjahjowidodo, T.; Do, T.N., A survey on hysteresis modeling, identification, and control, Mech. Syst. Signal Process., 49, 209-233, (2014)
[54] Iványi, A., Hysteresis Models in Electromagnetic Computation, Budapest: Akadémiai Kiadó, 1997.
[55] Bennett, L.H., Preface, Proceedings of the Workshop on Hysteresis Modeling and Micromagnetism (Asburn, 1996), Phys. B (Amsterdam, Neth.), 1997, vol. 233, no.4.
[56] Brokate, M.; Dressler, K.; Krejčí, P., The mróz model: a hysteresis operator for rate-independent plasticity, World Congress of Nonlinear Analysis’92, 1, 797-806, (1996) · Zbl 0858.47039
[57] Hornung, U., The mathematics of hysteresis, Bull. Austral. Math. Soc., 30, 271-287, (1984) · Zbl 0546.34009
[58] Krejčí, P., Vector hysteresis models, Eur. J. Appl. Math., 2, 281-292, (1991) · Zbl 0754.73015
[59] Krejčí, P., Hysteresis operators—a new approach to evolution differential inequalities, Commentat. Math. Univ. Carolin., 30, 525-536, (1989) · Zbl 0699.35270
[60] Krejčí, P., Hysteresis models of plasticity, Preprint, 1993. · Zbl 0808.35151
[61] Phase Transitions and Hysteresis, Visintin, A., Ed., Lecture Notes in Math., vol. 1584, Berlin: Springer-Verlag, 1994.
[62] Cardelli, E. D.; Torre, E.; Ban, G., Experimental determination of preisach distribution functions in magnetic cores, Phys. B (Amsterdam, Neth.), 275, 262-269, (2000)
[63] Borzdyko, V.I., Hysteresis nonstationary nonlinearities, Ukr. Math. J., 60, 339-356, (2008) · Zbl 1164.34414
[64] Leonov, G.A., Burkin, I.M., and Shepeljavyi, A.I., Frequency Methods in Oscillation Theory, Dordrecht: Kluwer, 1996. · Zbl 0844.34005
[65] Brokate, M., Pokrovskii, A., Rachinskii, D., and Rasskazov, O., Differential equations with hysteresis via a canonical example, The Science of Hysteresis, vol. 1: Mathematical Modeling and Applications, Berotti, G. and Mayergoyz, I.D., Eds., Amsterdam: Elsevier/Academic, 2006, pp. 125-292. · Zbl 1142.34026
[66] Borzdyko, V.I., Differential equations with complicated nonlinearities, (2000) · Zbl 0791.34005
[67] Borzdyko, V.I., Sufficient tests for the existence and uniqueness of a solution of the Cauchy problem for a differential equation with a hysteresis nonlinearity, Differ. Equations, 49, 1469-1475, (2013) · Zbl 1298.34077
[68] Borzdyko, V.I., On some classes of uniqueness theorems for differential equations with hysteresis nonlinearities, Dokl. Akad. Nauk Tadzh. SSR, 28, 547-551, (1985) · Zbl 0614.34006
[69] Borzdyko, V.I., Uniqueness theorem for differential equations with hysteresis nonlinearities, Differ. Equations, 23, 623-626, (1987) · Zbl 0651.34005
[70] Borzdyko, V.I., Uniqueness theorems of wend type for differential equations with hysteresis nonlinearities, Izv. Akad. Nauk Tadzh. SSR, Otd. Fiz.-Mat. Geol.-Khim. Nauk, 108, 63-65, (1988)
[71] Borzdyko, V.I., Uniqueness theorem of bernfeld, Driver, and Lakshmikantham type for differential equations with hysteresis nonlinearities, Dokl. Akad. Nauk Tadzh. SSR, 30, 74-77, (1987) · Zbl 0644.34006
[72] Borzdyko, V.I., Uniqueness conditions for differential-equation systems with hysteresis terms, Differ. Equations, 24, 827-830, (1988) · Zbl 0673.34001
[73] Borzdyko, V.I., Existence and uniqueness conditions of the solution of the Cauchy problem for a system of ordinary differential equations with hysteresis nonlinearities, Dokl. Akad. Nauk Tadzh. SSR, 30, 766-770, (1987) · Zbl 0669.34005
[74] Vladimirov, A.A.; Krasnosel’skii, M.A.; Chernorutskii, V.V., The Cauchy problem for systems with hysteresis, Dokl. Math., 48, 502-506, (1993) · Zbl 0823.34003
[75] Rachinskii, D.I., The Cauchy problem for differential equations with a mróz hysteresis nonlinearity, Differ. Equations, 33, 1047-1054, (1997) · Zbl 0929.34004
[76] Krejčí, P., A remark on the local Lipschitz continuity of vector hysteresis operators, Appl. Math., 46, 1-11, (2001) · Zbl 1067.34503
[77] Krejčí, P.; Sprekels, J., Hysteresis operators in phase-field models of Penrose-fife type, Appl. Math., 43, 207-222, (1998) · Zbl 0940.35106
[78] Krejčí, P.; Sprekels, J., On a system of nonlinear PDEs with temperature-dependent hysteresis in one-dimensional thermoplasticity, J. Math. Anal. Appl., 209, 25-46, (1997) · Zbl 0874.35022
[79] Krejčí, P.; Sprekels, J., Global solutions to a coupled parabolic-hyperbolic system with hysteresis in 1-D magnetoelasticity, Nonlinear Anal. Theory Methods Appl., 33, 341-358, (1998) · Zbl 0934.35194
[80] Krejčí, P.; Sprekels, J., A hysteresis approach to phase-field models, Nonlinear Anal. Theory Methods Appl., 39, 569-586, (2000) · Zbl 0941.35123
[81] Krejčí, P.; Sprekels, J., Strong solutions to equations of visco-thermo-plasticity with a temperaturedependent hysteretic strain-stress law, Solid Mech. Appl., 66, 237-244, (1999)
[82] Chernorutskii, V.; Rachinskii, D., On uniqueness of an initial-value problem for ODE with hysteresis, Nonlinear Differ. Equations Appl., 4, 391-399, (1997) · Zbl 0882.34004
[83] Kopfová, J., Uniqueness theorem for a Cauchy problem with hysteresis, Proc. Amer. Math. Soc., 127, 3527-3532, (1999) · Zbl 0932.34046
[84] Mróz, Z., On the description of anisotropic workhardening, J. Mech. Phys. Solids, 15, 163-175, (1967)
[85] Kopfová, J., Semigroup approach to the question of stability for a partial differential equation with hysteresis, J. Math. Anal. Appl., 223, 272-287, (1998) · Zbl 0915.35014
[86] Kopfová, J.; Kopf, T., Differential equations, hysteresis, and time delay, Z. Angew. Math. Phys., 53, 676-691, (2002) · Zbl 1023.35008
[87] Kopfová, J., Periodic solutions and asymptotic behavior of a PDE with hysteresis in the source term, Rocky Mt. J. Math., 36, 539-554, (2006) · Zbl 1144.35414
[88] Kopfová, J., Entropy condition for a quasilinear hyperbolic equation with hysteresis, Differ. Integr. Equations, 18, 451-467, (2005) · Zbl 1212.35295
[89] Kopfová, J.; Colli, P. (ed.); Kenmochi, N. (ed.); Sprekels, J. (ed.), Hysteresis in a first order hyperbolic equation, 141-150, (2006), Singapore · Zbl 1323.35104
[90] Eleuteri, M.; Kopfová, J., Uniqueness and decay estimates for a class of parabolic partial differential equations with hysteresis and convection, Nonlinear Anal. Theory Methods Appl., 73, 48-65, (2010) · Zbl 1405.35098
[91] Yakubovich, V.A., The solution of certain matrix inequalities in automatic control theory, Sov. Dokl. Math., 3, 620-623, (1962) · Zbl 0196.51304
[92] Natanson, I.P., Teoriya funktsii veshchestvennoi peremennoi (Theory of Functions of a Real Variable), Moscow: Nauka, 1974.
[93] Logemann, H.; Ryan, E.P.; Shvartsman, I., A class of differential-delay systems with hysteresis: asymptotic behaviour of solutions, Nonlinear Anal. Theory Methods Appl., 69, 363-391, (2008) · Zbl 1217.34121
[94] Logemann, H.; Ryan, E.P., Time-varying and adaptive integral control of infinite-dimensional regular linear systems with input nonlinearities, SIAM J. Control Optim., 38, 1120-1144, (2000) · Zbl 0968.93074
[95] Logemann, H.; Mawby, A.D.; Colonius, F. (ed.); Helmke, U. (ed.); Prätzel-Wolters, D. (ed.); Wirth, F. (ed.), Low-gain integral control of infinite-dimensional regular linear systems subject to input hysteresis, 255-293, (2000), Boston
[96] Yakubovich, V.A., Frequency-domain criteria for oscillation in nonlinear systems with one stationary nonlinear component, Sib. Math. J., 14, 768-788, (1974) · Zbl 0287.93010
[97] Popov, E.P., Teoriya nelineinykh sistem avtomaticheskogo regulirovaniya i upravleniya (Theory of Nonlinear Automatic Control Systems), Moscow: Nauka, 1978. · Zbl 0666.93061
[98] Tsypkin, Ya.Z., Teoriya releinykh sistem avtomaticheskogo regulirovaniya (Theory of Relay Automatic Control Systems), Moscow: Gos. Izd. Tekh. Teor. Lit., 1955.
[99] Tsypkin, Ya.Z., Releinye avtomaticheskie sistemy (Relay Automatic Systems), Moscow: Nauka, 1974.
[100] Caughey, T.K., Sinusoidal excitation of a system with bilinear hysteresis, J. Appl. Mech., 27, 640-643, (1960)
[101] Caughey, T.K., Random excitation of a system with bilinear hysteresis, J. Appl. Mech., 27, 649-652, (1960)
[102] Leonov, G.A.; Filina, M.Yu., Necessary conditions for the global stability of differential systems with hysteresis right-hand side, 44-49, (1981)
[103] Leonov, G.A.; Teshev, V.A., A frequency criterion of stability of systems of differential equations with hysteretic functions, Differ. Uravn., 23, 718-719, (1987) · Zbl 0655.34046
[104] Teshev, V.A.; Shumafov, M.M., Global asymptotic stability of solutions of second-order equations with a hysteresis nonlinearity, Tr. Fiz. Obshch. Resp. Adygeya, 2, 61-69, (1997)
[105] Teshev, V.A.; Shepelyavyi, A.I.; Shumafov, M.M., Frequency criterion for the stabilization of systems with hysteresis nonlinearities by a harmonic input, 261-280, (1997)
[106] Teshev, V.A.; Shumafov, M.M., Frequency criterion for the dichotomy of nonlinear control systems with hysteresis nonlinearities, Tr. Fiz. Obshch. Resp. Adygeya, 4, 34-39, (1999)
[107] Shumafov, M.M., Stabilization of systems with hysteresis nonlinearities by a harmonic input, Vestn. Adygeisk. Gos. Univ. Ser. Estest.-Mat. Tekh. Nauki, 3, 11-19, (2012)
[108] Shumafov, M.M., Stability of systems of differential equations with hysteresis nonlinearities, Vestn. Adygeisk. Gos. Univ. Ser. Estest.-Mat. Tekh. Nauki, 3, 20-31, (2012)
[109] Neimark, Yu.I., Periodic modes and stability in relay systems, Avtom. Telemekh., 14, 656-669, (1953)
[110] Netushil, A.V., Self-induced oscillations in systems with negative hysteresis, Trudy 5-i mezhdunarodnoi konferentsii po nelineinym kolebaniyam, 4, 393-396, (1970)
[111] Krasnosel’skii, A.M., Forced oscillations in systems with hysteresis nonlinearities, Sov. Dokl. Phys., 32, 98-100, (1987) · Zbl 0632.93035
[112] Rachinskii, D.I., Asymptotic stability of large-amplitude oscillations in systems with hysteresis, Nonlinear Differ. Equations Appl., 6, 267-288, (1999) · Zbl 0938.34036
[113] Rachinskii, D.I., Test for the existence of oscillations in systems with hysteresis, Izv. Ross. Akad. Estestv. Nauk Ser. MMMIU, 4, 235-248, (2000)
[114] Krasnoselskii, A.M.; Rachinskii, D.I., On a bifurcation governed by hysteresis nonlinearity, Nonlinear Differ. Equations Appl., 9, 93-115, (2002) · Zbl 1013.34036
[115] Krasnoselskii, A.M.; Rachinskii, D.I., On the continua of cycles in systems with hysteresis, Dokl. Math., 63, 339-344, (2001) · Zbl 1052.34052
[116] Krasnoselskii, A.M.; Rachinskii, D.I., On a nonlocal condition for existence of cycles of hysteresis systems, Autom. Remote Control, 64, 231-251, (2003) · Zbl 1071.34044
[117] Rachinskii, D.I., On natural continua of periodic solutions of the systems with hysteresis, Autom. Remote Control, 64, 420-438, (2003) · Zbl 1071.34045
[118] Rachinskii, D.I., On bifurcation of large-amplitude stable cycles for equations with hysteresis, Autom. Remote Control, 65, 1915-1937, (2004) · Zbl 1086.34042
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.